| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq1 | ⊢ ( 𝑥  =  𝑥𝑂  →  ( 𝑥  +s  𝑧 )  =  ( 𝑥𝑂  +s  𝑧 ) ) | 
						
							| 2 | 1 | breq2d | ⊢ ( 𝑥  =  𝑥𝑂  →  ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  ↔  ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 ) ) ) | 
						
							| 3 |  | breq2 | ⊢ ( 𝑥  =  𝑥𝑂  →  ( 𝑦  <s  𝑥  ↔  𝑦  <s  𝑥𝑂 ) ) | 
						
							| 4 | 2 3 | imbi12d | ⊢ ( 𝑥  =  𝑥𝑂  →  ( ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦  <s  𝑥 )  ↔  ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 ) ) ) | 
						
							| 5 |  | oveq1 | ⊢ ( 𝑦  =  𝑦𝑂  →  ( 𝑦  +s  𝑧 )  =  ( 𝑦𝑂  +s  𝑧 ) ) | 
						
							| 6 | 5 | breq1d | ⊢ ( 𝑦  =  𝑦𝑂  →  ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  ↔  ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 ) ) ) | 
						
							| 7 |  | breq1 | ⊢ ( 𝑦  =  𝑦𝑂  →  ( 𝑦  <s  𝑥𝑂  ↔  𝑦𝑂  <s  𝑥𝑂 ) ) | 
						
							| 8 | 6 7 | imbi12d | ⊢ ( 𝑦  =  𝑦𝑂  →  ( ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ↔  ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 ) ) ) | 
						
							| 9 |  | oveq2 | ⊢ ( 𝑧  =  𝑧𝑂  →  ( 𝑦𝑂  +s  𝑧 )  =  ( 𝑦𝑂  +s  𝑧𝑂 ) ) | 
						
							| 10 |  | oveq2 | ⊢ ( 𝑧  =  𝑧𝑂  →  ( 𝑥𝑂  +s  𝑧 )  =  ( 𝑥𝑂  +s  𝑧𝑂 ) ) | 
						
							| 11 | 9 10 | breq12d | ⊢ ( 𝑧  =  𝑧𝑂  →  ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  ↔  ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 ) ) ) | 
						
							| 12 | 11 | imbi1d | ⊢ ( 𝑧  =  𝑧𝑂  →  ( ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ↔  ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 ) ) ) | 
						
							| 13 |  | oveq1 | ⊢ ( 𝑥  =  𝑥𝑂  →  ( 𝑥  +s  𝑧𝑂 )  =  ( 𝑥𝑂  +s  𝑧𝑂 ) ) | 
						
							| 14 | 13 | breq2d | ⊢ ( 𝑥  =  𝑥𝑂  →  ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  ↔  ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 ) ) ) | 
						
							| 15 |  | breq2 | ⊢ ( 𝑥  =  𝑥𝑂  →  ( 𝑦𝑂  <s  𝑥  ↔  𝑦𝑂  <s  𝑥𝑂 ) ) | 
						
							| 16 | 14 15 | imbi12d | ⊢ ( 𝑥  =  𝑥𝑂  →  ( ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ↔  ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 ) ) ) | 
						
							| 17 |  | oveq1 | ⊢ ( 𝑦  =  𝑦𝑂  →  ( 𝑦  +s  𝑧𝑂 )  =  ( 𝑦𝑂  +s  𝑧𝑂 ) ) | 
						
							| 18 | 17 | breq1d | ⊢ ( 𝑦  =  𝑦𝑂  →  ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  ↔  ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 ) ) ) | 
						
							| 19 |  | breq1 | ⊢ ( 𝑦  =  𝑦𝑂  →  ( 𝑦  <s  𝑥  ↔  𝑦𝑂  <s  𝑥 ) ) | 
						
							| 20 | 18 19 | imbi12d | ⊢ ( 𝑦  =  𝑦𝑂  →  ( ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 )  ↔  ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 ) ) ) | 
						
							| 21 | 17 | breq1d | ⊢ ( 𝑦  =  𝑦𝑂  →  ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  ↔  ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 ) ) ) | 
						
							| 22 | 21 7 | imbi12d | ⊢ ( 𝑦  =  𝑦𝑂  →  ( ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 )  ↔  ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 ) ) ) | 
						
							| 23 |  | oveq2 | ⊢ ( 𝑧  =  𝑧𝑂  →  ( 𝑥  +s  𝑧 )  =  ( 𝑥  +s  𝑧𝑂 ) ) | 
						
							| 24 | 9 23 | breq12d | ⊢ ( 𝑧  =  𝑧𝑂  →  ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  ↔  ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 ) ) ) | 
						
							| 25 | 24 | imbi1d | ⊢ ( 𝑧  =  𝑧𝑂  →  ( ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 )  ↔  ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 ) ) ) | 
						
							| 26 |  | oveq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  +s  𝑧 )  =  ( 𝐴  +s  𝑧 ) ) | 
						
							| 27 | 26 | breq2d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  ↔  ( 𝑦  +s  𝑧 )  <s  ( 𝐴  +s  𝑧 ) ) ) | 
						
							| 28 |  | breq2 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑦  <s  𝑥  ↔  𝑦  <s  𝐴 ) ) | 
						
							| 29 | 27 28 | imbi12d | ⊢ ( 𝑥  =  𝐴  →  ( ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦  <s  𝑥 )  ↔  ( ( 𝑦  +s  𝑧 )  <s  ( 𝐴  +s  𝑧 )  →  𝑦  <s  𝐴 ) ) ) | 
						
							| 30 |  | oveq1 | ⊢ ( 𝑦  =  𝐵  →  ( 𝑦  +s  𝑧 )  =  ( 𝐵  +s  𝑧 ) ) | 
						
							| 31 | 30 | breq1d | ⊢ ( 𝑦  =  𝐵  →  ( ( 𝑦  +s  𝑧 )  <s  ( 𝐴  +s  𝑧 )  ↔  ( 𝐵  +s  𝑧 )  <s  ( 𝐴  +s  𝑧 ) ) ) | 
						
							| 32 |  | breq1 | ⊢ ( 𝑦  =  𝐵  →  ( 𝑦  <s  𝐴  ↔  𝐵  <s  𝐴 ) ) | 
						
							| 33 | 31 32 | imbi12d | ⊢ ( 𝑦  =  𝐵  →  ( ( ( 𝑦  +s  𝑧 )  <s  ( 𝐴  +s  𝑧 )  →  𝑦  <s  𝐴 )  ↔  ( ( 𝐵  +s  𝑧 )  <s  ( 𝐴  +s  𝑧 )  →  𝐵  <s  𝐴 ) ) ) | 
						
							| 34 |  | oveq2 | ⊢ ( 𝑧  =  𝐶  →  ( 𝐵  +s  𝑧 )  =  ( 𝐵  +s  𝐶 ) ) | 
						
							| 35 |  | oveq2 | ⊢ ( 𝑧  =  𝐶  →  ( 𝐴  +s  𝑧 )  =  ( 𝐴  +s  𝐶 ) ) | 
						
							| 36 | 34 35 | breq12d | ⊢ ( 𝑧  =  𝐶  →  ( ( 𝐵  +s  𝑧 )  <s  ( 𝐴  +s  𝑧 )  ↔  ( 𝐵  +s  𝐶 )  <s  ( 𝐴  +s  𝐶 ) ) ) | 
						
							| 37 | 36 | imbi1d | ⊢ ( 𝑧  =  𝐶  →  ( ( ( 𝐵  +s  𝑧 )  <s  ( 𝐴  +s  𝑧 )  →  𝐵  <s  𝐴 )  ↔  ( ( 𝐵  +s  𝐶 )  <s  ( 𝐴  +s  𝐶 )  →  𝐵  <s  𝐴 ) ) ) | 
						
							| 38 |  | simp2 | ⊢ ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  →  𝑦  ∈   No  ) | 
						
							| 39 |  | simp3 | ⊢ ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  →  𝑧  ∈   No  ) | 
						
							| 40 | 38 39 | addscut | ⊢ ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  →  ( ( 𝑦  +s  𝑧 )  ∈   No   ∧  ( { 𝑎  ∣  ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) 𝑎  =  ( 𝑦𝐿  +s  𝑧 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑏  =  ( 𝑦  +s  𝑧𝐿 ) } )  <<s  { ( 𝑦  +s  𝑧 ) }  ∧  { ( 𝑦  +s  𝑧 ) }  <<s  ( { 𝑐  ∣  ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) 𝑐  =  ( 𝑦𝑅  +s  𝑧 ) }  ∪  { 𝑑  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑑  =  ( 𝑦  +s  𝑧𝑅 ) } ) ) ) | 
						
							| 41 |  | simp2 | ⊢ ( ( ( 𝑦  +s  𝑧 )  ∈   No   ∧  ( { 𝑎  ∣  ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) 𝑎  =  ( 𝑦𝐿  +s  𝑧 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑏  =  ( 𝑦  +s  𝑧𝐿 ) } )  <<s  { ( 𝑦  +s  𝑧 ) }  ∧  { ( 𝑦  +s  𝑧 ) }  <<s  ( { 𝑐  ∣  ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) 𝑐  =  ( 𝑦𝑅  +s  𝑧 ) }  ∪  { 𝑑  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑑  =  ( 𝑦  +s  𝑧𝑅 ) } ) )  →  ( { 𝑎  ∣  ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) 𝑎  =  ( 𝑦𝐿  +s  𝑧 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑏  =  ( 𝑦  +s  𝑧𝐿 ) } )  <<s  { ( 𝑦  +s  𝑧 ) } ) | 
						
							| 42 | 40 41 | syl | ⊢ ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  →  ( { 𝑎  ∣  ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) 𝑎  =  ( 𝑦𝐿  +s  𝑧 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑏  =  ( 𝑦  +s  𝑧𝐿 ) } )  <<s  { ( 𝑦  +s  𝑧 ) } ) | 
						
							| 43 | 40 | simp3d | ⊢ ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  →  { ( 𝑦  +s  𝑧 ) }  <<s  ( { 𝑐  ∣  ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) 𝑐  =  ( 𝑦𝑅  +s  𝑧 ) }  ∪  { 𝑑  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑑  =  ( 𝑦  +s  𝑧𝑅 ) } ) ) | 
						
							| 44 |  | ovex | ⊢ ( 𝑦  +s  𝑧 )  ∈  V | 
						
							| 45 | 44 | snnz | ⊢ { ( 𝑦  +s  𝑧 ) }  ≠  ∅ | 
						
							| 46 |  | sslttr | ⊢ ( ( ( { 𝑎  ∣  ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) 𝑎  =  ( 𝑦𝐿  +s  𝑧 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑏  =  ( 𝑦  +s  𝑧𝐿 ) } )  <<s  { ( 𝑦  +s  𝑧 ) }  ∧  { ( 𝑦  +s  𝑧 ) }  <<s  ( { 𝑐  ∣  ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) 𝑐  =  ( 𝑦𝑅  +s  𝑧 ) }  ∪  { 𝑑  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑑  =  ( 𝑦  +s  𝑧𝑅 ) } )  ∧  { ( 𝑦  +s  𝑧 ) }  ≠  ∅ )  →  ( { 𝑎  ∣  ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) 𝑎  =  ( 𝑦𝐿  +s  𝑧 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑏  =  ( 𝑦  +s  𝑧𝐿 ) } )  <<s  ( { 𝑐  ∣  ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) 𝑐  =  ( 𝑦𝑅  +s  𝑧 ) }  ∪  { 𝑑  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑑  =  ( 𝑦  +s  𝑧𝑅 ) } ) ) | 
						
							| 47 | 45 46 | mp3an3 | ⊢ ( ( ( { 𝑎  ∣  ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) 𝑎  =  ( 𝑦𝐿  +s  𝑧 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑏  =  ( 𝑦  +s  𝑧𝐿 ) } )  <<s  { ( 𝑦  +s  𝑧 ) }  ∧  { ( 𝑦  +s  𝑧 ) }  <<s  ( { 𝑐  ∣  ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) 𝑐  =  ( 𝑦𝑅  +s  𝑧 ) }  ∪  { 𝑑  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑑  =  ( 𝑦  +s  𝑧𝑅 ) } ) )  →  ( { 𝑎  ∣  ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) 𝑎  =  ( 𝑦𝐿  +s  𝑧 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑏  =  ( 𝑦  +s  𝑧𝐿 ) } )  <<s  ( { 𝑐  ∣  ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) 𝑐  =  ( 𝑦𝑅  +s  𝑧 ) }  ∪  { 𝑑  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑑  =  ( 𝑦  +s  𝑧𝑅 ) } ) ) | 
						
							| 48 | 42 43 47 | syl2anc | ⊢ ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  →  ( { 𝑎  ∣  ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) 𝑎  =  ( 𝑦𝐿  +s  𝑧 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑏  =  ( 𝑦  +s  𝑧𝐿 ) } )  <<s  ( { 𝑐  ∣  ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) 𝑐  =  ( 𝑦𝑅  +s  𝑧 ) }  ∪  { 𝑑  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑑  =  ( 𝑦  +s  𝑧𝑅 ) } ) ) | 
						
							| 49 |  | simp1 | ⊢ ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  →  𝑥  ∈   No  ) | 
						
							| 50 | 49 39 | addscut | ⊢ ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  →  ( ( 𝑥  +s  𝑧 )  ∈   No   ∧  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  𝑧 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑏  =  ( 𝑥  +s  𝑧𝐿 ) } )  <<s  { ( 𝑥  +s  𝑧 ) }  ∧  { ( 𝑥  +s  𝑧 ) }  <<s  ( { 𝑐  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑐  =  ( 𝑥𝑅  +s  𝑧 ) }  ∪  { 𝑑  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑑  =  ( 𝑥  +s  𝑧𝑅 ) } ) ) ) | 
						
							| 51 |  | simp2 | ⊢ ( ( ( 𝑥  +s  𝑧 )  ∈   No   ∧  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  𝑧 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑏  =  ( 𝑥  +s  𝑧𝐿 ) } )  <<s  { ( 𝑥  +s  𝑧 ) }  ∧  { ( 𝑥  +s  𝑧 ) }  <<s  ( { 𝑐  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑐  =  ( 𝑥𝑅  +s  𝑧 ) }  ∪  { 𝑑  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑑  =  ( 𝑥  +s  𝑧𝑅 ) } ) )  →  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  𝑧 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑏  =  ( 𝑥  +s  𝑧𝐿 ) } )  <<s  { ( 𝑥  +s  𝑧 ) } ) | 
						
							| 52 | 50 51 | syl | ⊢ ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  →  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  𝑧 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑏  =  ( 𝑥  +s  𝑧𝐿 ) } )  <<s  { ( 𝑥  +s  𝑧 ) } ) | 
						
							| 53 | 50 | simp3d | ⊢ ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  →  { ( 𝑥  +s  𝑧 ) }  <<s  ( { 𝑐  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑐  =  ( 𝑥𝑅  +s  𝑧 ) }  ∪  { 𝑑  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑑  =  ( 𝑥  +s  𝑧𝑅 ) } ) ) | 
						
							| 54 |  | ovex | ⊢ ( 𝑥  +s  𝑧 )  ∈  V | 
						
							| 55 | 54 | snnz | ⊢ { ( 𝑥  +s  𝑧 ) }  ≠  ∅ | 
						
							| 56 |  | sslttr | ⊢ ( ( ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  𝑧 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑏  =  ( 𝑥  +s  𝑧𝐿 ) } )  <<s  { ( 𝑥  +s  𝑧 ) }  ∧  { ( 𝑥  +s  𝑧 ) }  <<s  ( { 𝑐  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑐  =  ( 𝑥𝑅  +s  𝑧 ) }  ∪  { 𝑑  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑑  =  ( 𝑥  +s  𝑧𝑅 ) } )  ∧  { ( 𝑥  +s  𝑧 ) }  ≠  ∅ )  →  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  𝑧 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑏  =  ( 𝑥  +s  𝑧𝐿 ) } )  <<s  ( { 𝑐  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑐  =  ( 𝑥𝑅  +s  𝑧 ) }  ∪  { 𝑑  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑑  =  ( 𝑥  +s  𝑧𝑅 ) } ) ) | 
						
							| 57 | 55 56 | mp3an3 | ⊢ ( ( ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  𝑧 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑏  =  ( 𝑥  +s  𝑧𝐿 ) } )  <<s  { ( 𝑥  +s  𝑧 ) }  ∧  { ( 𝑥  +s  𝑧 ) }  <<s  ( { 𝑐  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑐  =  ( 𝑥𝑅  +s  𝑧 ) }  ∪  { 𝑑  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑑  =  ( 𝑥  +s  𝑧𝑅 ) } ) )  →  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  𝑧 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑏  =  ( 𝑥  +s  𝑧𝐿 ) } )  <<s  ( { 𝑐  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑐  =  ( 𝑥𝑅  +s  𝑧 ) }  ∪  { 𝑑  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑑  =  ( 𝑥  +s  𝑧𝑅 ) } ) ) | 
						
							| 58 | 52 53 57 | syl2anc | ⊢ ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  →  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  𝑧 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑏  =  ( 𝑥  +s  𝑧𝐿 ) } )  <<s  ( { 𝑐  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑐  =  ( 𝑥𝑅  +s  𝑧 ) }  ∪  { 𝑑  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑑  =  ( 𝑥  +s  𝑧𝑅 ) } ) ) | 
						
							| 59 |  | addsval2 | ⊢ ( ( 𝑦  ∈   No   ∧  𝑧  ∈   No  )  →  ( 𝑦  +s  𝑧 )  =  ( ( { 𝑎  ∣  ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) 𝑎  =  ( 𝑦𝐿  +s  𝑧 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑏  =  ( 𝑦  +s  𝑧𝐿 ) } )  |s  ( { 𝑐  ∣  ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) 𝑐  =  ( 𝑦𝑅  +s  𝑧 ) }  ∪  { 𝑑  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑑  =  ( 𝑦  +s  𝑧𝑅 ) } ) ) ) | 
						
							| 60 | 59 | 3adant1 | ⊢ ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  →  ( 𝑦  +s  𝑧 )  =  ( ( { 𝑎  ∣  ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) 𝑎  =  ( 𝑦𝐿  +s  𝑧 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑏  =  ( 𝑦  +s  𝑧𝐿 ) } )  |s  ( { 𝑐  ∣  ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) 𝑐  =  ( 𝑦𝑅  +s  𝑧 ) }  ∪  { 𝑑  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑑  =  ( 𝑦  +s  𝑧𝑅 ) } ) ) ) | 
						
							| 61 |  | addsval2 | ⊢ ( ( 𝑥  ∈   No   ∧  𝑧  ∈   No  )  →  ( 𝑥  +s  𝑧 )  =  ( ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  𝑧 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑏  =  ( 𝑥  +s  𝑧𝐿 ) } )  |s  ( { 𝑐  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑐  =  ( 𝑥𝑅  +s  𝑧 ) }  ∪  { 𝑑  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑑  =  ( 𝑥  +s  𝑧𝑅 ) } ) ) ) | 
						
							| 62 | 61 | 3adant2 | ⊢ ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  →  ( 𝑥  +s  𝑧 )  =  ( ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  𝑧 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑏  =  ( 𝑥  +s  𝑧𝐿 ) } )  |s  ( { 𝑐  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑐  =  ( 𝑥𝑅  +s  𝑧 ) }  ∪  { 𝑑  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑑  =  ( 𝑥  +s  𝑧𝑅 ) } ) ) ) | 
						
							| 63 |  | sltrec | ⊢ ( ( ( ( { 𝑎  ∣  ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) 𝑎  =  ( 𝑦𝐿  +s  𝑧 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑏  =  ( 𝑦  +s  𝑧𝐿 ) } )  <<s  ( { 𝑐  ∣  ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) 𝑐  =  ( 𝑦𝑅  +s  𝑧 ) }  ∪  { 𝑑  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑑  =  ( 𝑦  +s  𝑧𝑅 ) } )  ∧  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  𝑧 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑏  =  ( 𝑥  +s  𝑧𝐿 ) } )  <<s  ( { 𝑐  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑐  =  ( 𝑥𝑅  +s  𝑧 ) }  ∪  { 𝑑  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑑  =  ( 𝑥  +s  𝑧𝑅 ) } ) )  ∧  ( ( 𝑦  +s  𝑧 )  =  ( ( { 𝑎  ∣  ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) 𝑎  =  ( 𝑦𝐿  +s  𝑧 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑏  =  ( 𝑦  +s  𝑧𝐿 ) } )  |s  ( { 𝑐  ∣  ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) 𝑐  =  ( 𝑦𝑅  +s  𝑧 ) }  ∪  { 𝑑  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑑  =  ( 𝑦  +s  𝑧𝑅 ) } ) )  ∧  ( 𝑥  +s  𝑧 )  =  ( ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  𝑧 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑏  =  ( 𝑥  +s  𝑧𝐿 ) } )  |s  ( { 𝑐  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑐  =  ( 𝑥𝑅  +s  𝑧 ) }  ∪  { 𝑑  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑑  =  ( 𝑥  +s  𝑧𝑅 ) } ) ) ) )  →  ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  ↔  ( ∃ 𝑝  ∈  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  𝑧 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑏  =  ( 𝑥  +s  𝑧𝐿 ) } ) ( 𝑦  +s  𝑧 )  ≤s  𝑝  ∨  ∃ 𝑞  ∈  ( { 𝑐  ∣  ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) 𝑐  =  ( 𝑦𝑅  +s  𝑧 ) }  ∪  { 𝑑  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑑  =  ( 𝑦  +s  𝑧𝑅 ) } ) 𝑞  ≤s  ( 𝑥  +s  𝑧 ) ) ) ) | 
						
							| 64 | 48 58 60 62 63 | syl22anc | ⊢ ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  →  ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  ↔  ( ∃ 𝑝  ∈  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  𝑧 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑏  =  ( 𝑥  +s  𝑧𝐿 ) } ) ( 𝑦  +s  𝑧 )  ≤s  𝑝  ∨  ∃ 𝑞  ∈  ( { 𝑐  ∣  ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) 𝑐  =  ( 𝑦𝑅  +s  𝑧 ) }  ∪  { 𝑑  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑑  =  ( 𝑦  +s  𝑧𝑅 ) } ) 𝑞  ≤s  ( 𝑥  +s  𝑧 ) ) ) ) | 
						
							| 65 | 64 | adantr | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  →  ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  ↔  ( ∃ 𝑝  ∈  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  𝑧 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑏  =  ( 𝑥  +s  𝑧𝐿 ) } ) ( 𝑦  +s  𝑧 )  ≤s  𝑝  ∨  ∃ 𝑞  ∈  ( { 𝑐  ∣  ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) 𝑐  =  ( 𝑦𝑅  +s  𝑧 ) }  ∪  { 𝑑  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑑  =  ( 𝑦  +s  𝑧𝑅 ) } ) 𝑞  ≤s  ( 𝑥  +s  𝑧 ) ) ) ) | 
						
							| 66 |  | rexun | ⊢ ( ∃ 𝑝  ∈  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  𝑧 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑏  =  ( 𝑥  +s  𝑧𝐿 ) } ) ( 𝑦  +s  𝑧 )  ≤s  𝑝  ↔  ( ∃ 𝑝  ∈  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  𝑧 ) } ( 𝑦  +s  𝑧 )  ≤s  𝑝  ∨  ∃ 𝑝  ∈  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑏  =  ( 𝑥  +s  𝑧𝐿 ) } ( 𝑦  +s  𝑧 )  ≤s  𝑝 ) ) | 
						
							| 67 |  | eqeq1 | ⊢ ( 𝑎  =  𝑝  →  ( 𝑎  =  ( 𝑥𝐿  +s  𝑧 )  ↔  𝑝  =  ( 𝑥𝐿  +s  𝑧 ) ) ) | 
						
							| 68 | 67 | rexbidv | ⊢ ( 𝑎  =  𝑝  →  ( ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  𝑧 )  ↔  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑝  =  ( 𝑥𝐿  +s  𝑧 ) ) ) | 
						
							| 69 | 68 | rexab | ⊢ ( ∃ 𝑝  ∈  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  𝑧 ) } ( 𝑦  +s  𝑧 )  ≤s  𝑝  ↔  ∃ 𝑝 ( ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑝  =  ( 𝑥𝐿  +s  𝑧 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  𝑝 ) ) | 
						
							| 70 |  | rexcom4 | ⊢ ( ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑝 ( 𝑝  =  ( 𝑥𝐿  +s  𝑧 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  𝑝 )  ↔  ∃ 𝑝 ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ( 𝑝  =  ( 𝑥𝐿  +s  𝑧 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  𝑝 ) ) | 
						
							| 71 |  | r19.41v | ⊢ ( ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ( 𝑝  =  ( 𝑥𝐿  +s  𝑧 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  𝑝 )  ↔  ( ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑝  =  ( 𝑥𝐿  +s  𝑧 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  𝑝 ) ) | 
						
							| 72 | 71 | exbii | ⊢ ( ∃ 𝑝 ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ( 𝑝  =  ( 𝑥𝐿  +s  𝑧 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  𝑝 )  ↔  ∃ 𝑝 ( ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑝  =  ( 𝑥𝐿  +s  𝑧 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  𝑝 ) ) | 
						
							| 73 | 70 72 | bitri | ⊢ ( ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑝 ( 𝑝  =  ( 𝑥𝐿  +s  𝑧 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  𝑝 )  ↔  ∃ 𝑝 ( ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑝  =  ( 𝑥𝐿  +s  𝑧 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  𝑝 ) ) | 
						
							| 74 |  | ovex | ⊢ ( 𝑥𝐿  +s  𝑧 )  ∈  V | 
						
							| 75 |  | breq2 | ⊢ ( 𝑝  =  ( 𝑥𝐿  +s  𝑧 )  →  ( ( 𝑦  +s  𝑧 )  ≤s  𝑝  ↔  ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥𝐿  +s  𝑧 ) ) ) | 
						
							| 76 | 74 75 | ceqsexv | ⊢ ( ∃ 𝑝 ( 𝑝  =  ( 𝑥𝐿  +s  𝑧 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  𝑝 )  ↔  ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥𝐿  +s  𝑧 ) ) | 
						
							| 77 | 76 | rexbii | ⊢ ( ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑝 ( 𝑝  =  ( 𝑥𝐿  +s  𝑧 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  𝑝 )  ↔  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥𝐿  +s  𝑧 ) ) | 
						
							| 78 | 73 77 | bitr3i | ⊢ ( ∃ 𝑝 ( ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑝  =  ( 𝑥𝐿  +s  𝑧 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  𝑝 )  ↔  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥𝐿  +s  𝑧 ) ) | 
						
							| 79 | 69 78 | bitri | ⊢ ( ∃ 𝑝  ∈  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  𝑧 ) } ( 𝑦  +s  𝑧 )  ≤s  𝑝  ↔  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥𝐿  +s  𝑧 ) ) | 
						
							| 80 |  | eqeq1 | ⊢ ( 𝑏  =  𝑝  →  ( 𝑏  =  ( 𝑥  +s  𝑧𝐿 )  ↔  𝑝  =  ( 𝑥  +s  𝑧𝐿 ) ) ) | 
						
							| 81 | 80 | rexbidv | ⊢ ( 𝑏  =  𝑝  →  ( ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑏  =  ( 𝑥  +s  𝑧𝐿 )  ↔  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑝  =  ( 𝑥  +s  𝑧𝐿 ) ) ) | 
						
							| 82 | 81 | rexab | ⊢ ( ∃ 𝑝  ∈  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑏  =  ( 𝑥  +s  𝑧𝐿 ) } ( 𝑦  +s  𝑧 )  ≤s  𝑝  ↔  ∃ 𝑝 ( ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑝  =  ( 𝑥  +s  𝑧𝐿 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  𝑝 ) ) | 
						
							| 83 |  | rexcom4 | ⊢ ( ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) ∃ 𝑝 ( 𝑝  =  ( 𝑥  +s  𝑧𝐿 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  𝑝 )  ↔  ∃ 𝑝 ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) ( 𝑝  =  ( 𝑥  +s  𝑧𝐿 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  𝑝 ) ) | 
						
							| 84 |  | r19.41v | ⊢ ( ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) ( 𝑝  =  ( 𝑥  +s  𝑧𝐿 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  𝑝 )  ↔  ( ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑝  =  ( 𝑥  +s  𝑧𝐿 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  𝑝 ) ) | 
						
							| 85 | 84 | exbii | ⊢ ( ∃ 𝑝 ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) ( 𝑝  =  ( 𝑥  +s  𝑧𝐿 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  𝑝 )  ↔  ∃ 𝑝 ( ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑝  =  ( 𝑥  +s  𝑧𝐿 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  𝑝 ) ) | 
						
							| 86 | 83 85 | bitri | ⊢ ( ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) ∃ 𝑝 ( 𝑝  =  ( 𝑥  +s  𝑧𝐿 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  𝑝 )  ↔  ∃ 𝑝 ( ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑝  =  ( 𝑥  +s  𝑧𝐿 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  𝑝 ) ) | 
						
							| 87 |  | ovex | ⊢ ( 𝑥  +s  𝑧𝐿 )  ∈  V | 
						
							| 88 |  | breq2 | ⊢ ( 𝑝  =  ( 𝑥  +s  𝑧𝐿 )  →  ( ( 𝑦  +s  𝑧 )  ≤s  𝑝  ↔  ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧𝐿 ) ) ) | 
						
							| 89 | 87 88 | ceqsexv | ⊢ ( ∃ 𝑝 ( 𝑝  =  ( 𝑥  +s  𝑧𝐿 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  𝑝 )  ↔  ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧𝐿 ) ) | 
						
							| 90 | 89 | rexbii | ⊢ ( ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) ∃ 𝑝 ( 𝑝  =  ( 𝑥  +s  𝑧𝐿 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  𝑝 )  ↔  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧𝐿 ) ) | 
						
							| 91 | 86 90 | bitr3i | ⊢ ( ∃ 𝑝 ( ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑝  =  ( 𝑥  +s  𝑧𝐿 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  𝑝 )  ↔  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧𝐿 ) ) | 
						
							| 92 | 82 91 | bitri | ⊢ ( ∃ 𝑝  ∈  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑏  =  ( 𝑥  +s  𝑧𝐿 ) } ( 𝑦  +s  𝑧 )  ≤s  𝑝  ↔  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧𝐿 ) ) | 
						
							| 93 | 79 92 | orbi12i | ⊢ ( ( ∃ 𝑝  ∈  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  𝑧 ) } ( 𝑦  +s  𝑧 )  ≤s  𝑝  ∨  ∃ 𝑝  ∈  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑏  =  ( 𝑥  +s  𝑧𝐿 ) } ( 𝑦  +s  𝑧 )  ≤s  𝑝 )  ↔  ( ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥𝐿  +s  𝑧 )  ∨  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧𝐿 ) ) ) | 
						
							| 94 | 66 93 | bitri | ⊢ ( ∃ 𝑝  ∈  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  𝑧 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑏  =  ( 𝑥  +s  𝑧𝐿 ) } ) ( 𝑦  +s  𝑧 )  ≤s  𝑝  ↔  ( ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥𝐿  +s  𝑧 )  ∨  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧𝐿 ) ) ) | 
						
							| 95 |  | simpll2 | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑥𝐿  ∈  (  L  ‘ 𝑥 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥𝐿  +s  𝑧 ) ) )  →  𝑦  ∈   No  ) | 
						
							| 96 |  | leftssno | ⊢ (  L  ‘ 𝑥 )  ⊆   No | 
						
							| 97 | 96 | sseli | ⊢ ( 𝑥𝐿  ∈  (  L  ‘ 𝑥 )  →  𝑥𝐿  ∈   No  ) | 
						
							| 98 | 97 | adantr | ⊢ ( ( 𝑥𝐿  ∈  (  L  ‘ 𝑥 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥𝐿  +s  𝑧 ) )  →  𝑥𝐿  ∈   No  ) | 
						
							| 99 | 98 | adantl | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑥𝐿  ∈  (  L  ‘ 𝑥 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥𝐿  +s  𝑧 ) ) )  →  𝑥𝐿  ∈   No  ) | 
						
							| 100 |  | simpll1 | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑥𝐿  ∈  (  L  ‘ 𝑥 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥𝐿  +s  𝑧 ) ) )  →  𝑥  ∈   No  ) | 
						
							| 101 |  | simprr | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑥𝐿  ∈  (  L  ‘ 𝑥 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥𝐿  +s  𝑧 ) ) )  →  ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥𝐿  +s  𝑧 ) ) | 
						
							| 102 |  | simpll3 | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑥𝐿  ∈  (  L  ‘ 𝑥 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥𝐿  +s  𝑧 ) ) )  →  𝑧  ∈   No  ) | 
						
							| 103 |  | sleadd1im | ⊢ ( ( 𝑦  ∈   No   ∧  𝑥𝐿  ∈   No   ∧  𝑧  ∈   No  )  →  ( ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥𝐿  +s  𝑧 )  →  𝑦  ≤s  𝑥𝐿 ) ) | 
						
							| 104 | 95 99 102 103 | syl3anc | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑥𝐿  ∈  (  L  ‘ 𝑥 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥𝐿  +s  𝑧 ) ) )  →  ( ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥𝐿  +s  𝑧 )  →  𝑦  ≤s  𝑥𝐿 ) ) | 
						
							| 105 | 101 104 | mpd | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑥𝐿  ∈  (  L  ‘ 𝑥 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥𝐿  +s  𝑧 ) ) )  →  𝑦  ≤s  𝑥𝐿 ) | 
						
							| 106 |  | leftval | ⊢ (  L  ‘ 𝑥 )  =  { 𝑥𝐿  ∈  (  O  ‘ (  bday  ‘ 𝑥 ) )  ∣  𝑥𝐿  <s  𝑥 } | 
						
							| 107 | 106 | reqabi | ⊢ ( 𝑥𝐿  ∈  (  L  ‘ 𝑥 )  ↔  ( 𝑥𝐿  ∈  (  O  ‘ (  bday  ‘ 𝑥 ) )  ∧  𝑥𝐿  <s  𝑥 ) ) | 
						
							| 108 | 107 | simprbi | ⊢ ( 𝑥𝐿  ∈  (  L  ‘ 𝑥 )  →  𝑥𝐿  <s  𝑥 ) | 
						
							| 109 | 108 | adantr | ⊢ ( ( 𝑥𝐿  ∈  (  L  ‘ 𝑥 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥𝐿  +s  𝑧 ) )  →  𝑥𝐿  <s  𝑥 ) | 
						
							| 110 | 109 | adantl | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑥𝐿  ∈  (  L  ‘ 𝑥 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥𝐿  +s  𝑧 ) ) )  →  𝑥𝐿  <s  𝑥 ) | 
						
							| 111 | 95 99 100 105 110 | slelttrd | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑥𝐿  ∈  (  L  ‘ 𝑥 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥𝐿  +s  𝑧 ) ) )  →  𝑦  <s  𝑥 ) | 
						
							| 112 | 111 | rexlimdvaa | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  →  ( ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥𝐿  +s  𝑧 )  →  𝑦  <s  𝑥 ) ) | 
						
							| 113 |  | simpll2 | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑧𝐿  ∈  (  L  ‘ 𝑧 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧𝐿 ) ) )  →  𝑦  ∈   No  ) | 
						
							| 114 |  | leftssno | ⊢ (  L  ‘ 𝑧 )  ⊆   No | 
						
							| 115 | 114 | sseli | ⊢ ( 𝑧𝐿  ∈  (  L  ‘ 𝑧 )  →  𝑧𝐿  ∈   No  ) | 
						
							| 116 | 115 | adantr | ⊢ ( ( 𝑧𝐿  ∈  (  L  ‘ 𝑧 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧𝐿 ) )  →  𝑧𝐿  ∈   No  ) | 
						
							| 117 | 116 | adantl | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑧𝐿  ∈  (  L  ‘ 𝑧 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧𝐿 ) ) )  →  𝑧𝐿  ∈   No  ) | 
						
							| 118 | 113 117 | addscld | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑧𝐿  ∈  (  L  ‘ 𝑧 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧𝐿 ) ) )  →  ( 𝑦  +s  𝑧𝐿 )  ∈   No  ) | 
						
							| 119 |  | simpll3 | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑧𝐿  ∈  (  L  ‘ 𝑧 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧𝐿 ) ) )  →  𝑧  ∈   No  ) | 
						
							| 120 | 113 119 | addscld | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑧𝐿  ∈  (  L  ‘ 𝑧 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧𝐿 ) ) )  →  ( 𝑦  +s  𝑧 )  ∈   No  ) | 
						
							| 121 |  | simpll1 | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑧𝐿  ∈  (  L  ‘ 𝑧 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧𝐿 ) ) )  →  𝑥  ∈   No  ) | 
						
							| 122 | 121 117 | addscld | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑧𝐿  ∈  (  L  ‘ 𝑧 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧𝐿 ) ) )  →  ( 𝑥  +s  𝑧𝐿 )  ∈   No  ) | 
						
							| 123 |  | leftval | ⊢ (  L  ‘ 𝑧 )  =  { 𝑧𝐿  ∈  (  O  ‘ (  bday  ‘ 𝑧 ) )  ∣  𝑧𝐿  <s  𝑧 } | 
						
							| 124 | 123 | reqabi | ⊢ ( 𝑧𝐿  ∈  (  L  ‘ 𝑧 )  ↔  ( 𝑧𝐿  ∈  (  O  ‘ (  bday  ‘ 𝑧 ) )  ∧  𝑧𝐿  <s  𝑧 ) ) | 
						
							| 125 | 124 | simprbi | ⊢ ( 𝑧𝐿  ∈  (  L  ‘ 𝑧 )  →  𝑧𝐿  <s  𝑧 ) | 
						
							| 126 | 125 | adantr | ⊢ ( ( 𝑧𝐿  ∈  (  L  ‘ 𝑧 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧𝐿 ) )  →  𝑧𝐿  <s  𝑧 ) | 
						
							| 127 | 126 | adantl | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑧𝐿  ∈  (  L  ‘ 𝑧 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧𝐿 ) ) )  →  𝑧𝐿  <s  𝑧 ) | 
						
							| 128 |  | sltadd2im | ⊢ ( ( 𝑧𝐿  ∈   No   ∧  𝑧  ∈   No   ∧  𝑦  ∈   No  )  →  ( 𝑧𝐿  <s  𝑧  →  ( 𝑦  +s  𝑧𝐿 )  <s  ( 𝑦  +s  𝑧 ) ) ) | 
						
							| 129 | 117 119 113 128 | syl3anc | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑧𝐿  ∈  (  L  ‘ 𝑧 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧𝐿 ) ) )  →  ( 𝑧𝐿  <s  𝑧  →  ( 𝑦  +s  𝑧𝐿 )  <s  ( 𝑦  +s  𝑧 ) ) ) | 
						
							| 130 | 127 129 | mpd | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑧𝐿  ∈  (  L  ‘ 𝑧 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧𝐿 ) ) )  →  ( 𝑦  +s  𝑧𝐿 )  <s  ( 𝑦  +s  𝑧 ) ) | 
						
							| 131 |  | simprr | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑧𝐿  ∈  (  L  ‘ 𝑧 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧𝐿 ) ) )  →  ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧𝐿 ) ) | 
						
							| 132 | 118 120 122 130 131 | sltletrd | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑧𝐿  ∈  (  L  ‘ 𝑧 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧𝐿 ) ) )  →  ( 𝑦  +s  𝑧𝐿 )  <s  ( 𝑥  +s  𝑧𝐿 ) ) | 
						
							| 133 |  | oveq2 | ⊢ ( 𝑧𝑂  =  𝑧𝐿  →  ( 𝑦  +s  𝑧𝑂 )  =  ( 𝑦  +s  𝑧𝐿 ) ) | 
						
							| 134 |  | oveq2 | ⊢ ( 𝑧𝑂  =  𝑧𝐿  →  ( 𝑥  +s  𝑧𝑂 )  =  ( 𝑥  +s  𝑧𝐿 ) ) | 
						
							| 135 | 133 134 | breq12d | ⊢ ( 𝑧𝑂  =  𝑧𝐿  →  ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  ↔  ( 𝑦  +s  𝑧𝐿 )  <s  ( 𝑥  +s  𝑧𝐿 ) ) ) | 
						
							| 136 | 135 | imbi1d | ⊢ ( 𝑧𝑂  =  𝑧𝐿  →  ( ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 )  ↔  ( ( 𝑦  +s  𝑧𝐿 )  <s  ( 𝑥  +s  𝑧𝐿 )  →  𝑦  <s  𝑥 ) ) ) | 
						
							| 137 |  | simplr3 | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑧𝐿  ∈  (  L  ‘ 𝑧 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧𝐿 ) ) )  →  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) | 
						
							| 138 |  | simprl | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑧𝐿  ∈  (  L  ‘ 𝑧 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧𝐿 ) ) )  →  𝑧𝐿  ∈  (  L  ‘ 𝑧 ) ) | 
						
							| 139 |  | elun1 | ⊢ ( 𝑧𝐿  ∈  (  L  ‘ 𝑧 )  →  𝑧𝐿  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ) | 
						
							| 140 | 138 139 | syl | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑧𝐿  ∈  (  L  ‘ 𝑧 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧𝐿 ) ) )  →  𝑧𝐿  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ) | 
						
							| 141 | 136 137 140 | rspcdva | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑧𝐿  ∈  (  L  ‘ 𝑧 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧𝐿 ) ) )  →  ( ( 𝑦  +s  𝑧𝐿 )  <s  ( 𝑥  +s  𝑧𝐿 )  →  𝑦  <s  𝑥 ) ) | 
						
							| 142 | 132 141 | mpd | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑧𝐿  ∈  (  L  ‘ 𝑧 )  ∧  ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧𝐿 ) ) )  →  𝑦  <s  𝑥 ) | 
						
							| 143 | 142 | rexlimdvaa | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  →  ( ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧𝐿 )  →  𝑦  <s  𝑥 ) ) | 
						
							| 144 | 112 143 | jaod | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  →  ( ( ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥𝐿  +s  𝑧 )  ∨  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) ( 𝑦  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧𝐿 ) )  →  𝑦  <s  𝑥 ) ) | 
						
							| 145 | 94 144 | biimtrid | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  →  ( ∃ 𝑝  ∈  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  𝑧 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑏  =  ( 𝑥  +s  𝑧𝐿 ) } ) ( 𝑦  +s  𝑧 )  ≤s  𝑝  →  𝑦  <s  𝑥 ) ) | 
						
							| 146 |  | rexun | ⊢ ( ∃ 𝑞  ∈  ( { 𝑐  ∣  ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) 𝑐  =  ( 𝑦𝑅  +s  𝑧 ) }  ∪  { 𝑑  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑑  =  ( 𝑦  +s  𝑧𝑅 ) } ) 𝑞  ≤s  ( 𝑥  +s  𝑧 )  ↔  ( ∃ 𝑞  ∈  { 𝑐  ∣  ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) 𝑐  =  ( 𝑦𝑅  +s  𝑧 ) } 𝑞  ≤s  ( 𝑥  +s  𝑧 )  ∨  ∃ 𝑞  ∈  { 𝑑  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑑  =  ( 𝑦  +s  𝑧𝑅 ) } 𝑞  ≤s  ( 𝑥  +s  𝑧 ) ) ) | 
						
							| 147 |  | eqeq1 | ⊢ ( 𝑐  =  𝑞  →  ( 𝑐  =  ( 𝑦𝑅  +s  𝑧 )  ↔  𝑞  =  ( 𝑦𝑅  +s  𝑧 ) ) ) | 
						
							| 148 | 147 | rexbidv | ⊢ ( 𝑐  =  𝑞  →  ( ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) 𝑐  =  ( 𝑦𝑅  +s  𝑧 )  ↔  ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) 𝑞  =  ( 𝑦𝑅  +s  𝑧 ) ) ) | 
						
							| 149 | 148 | rexab | ⊢ ( ∃ 𝑞  ∈  { 𝑐  ∣  ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) 𝑐  =  ( 𝑦𝑅  +s  𝑧 ) } 𝑞  ≤s  ( 𝑥  +s  𝑧 )  ↔  ∃ 𝑞 ( ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) 𝑞  =  ( 𝑦𝑅  +s  𝑧 )  ∧  𝑞  ≤s  ( 𝑥  +s  𝑧 ) ) ) | 
						
							| 150 |  | rexcom4 | ⊢ ( ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑞 ( 𝑞  =  ( 𝑦𝑅  +s  𝑧 )  ∧  𝑞  ≤s  ( 𝑥  +s  𝑧 ) )  ↔  ∃ 𝑞 ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ( 𝑞  =  ( 𝑦𝑅  +s  𝑧 )  ∧  𝑞  ≤s  ( 𝑥  +s  𝑧 ) ) ) | 
						
							| 151 |  | r19.41v | ⊢ ( ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ( 𝑞  =  ( 𝑦𝑅  +s  𝑧 )  ∧  𝑞  ≤s  ( 𝑥  +s  𝑧 ) )  ↔  ( ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) 𝑞  =  ( 𝑦𝑅  +s  𝑧 )  ∧  𝑞  ≤s  ( 𝑥  +s  𝑧 ) ) ) | 
						
							| 152 | 151 | exbii | ⊢ ( ∃ 𝑞 ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ( 𝑞  =  ( 𝑦𝑅  +s  𝑧 )  ∧  𝑞  ≤s  ( 𝑥  +s  𝑧 ) )  ↔  ∃ 𝑞 ( ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) 𝑞  =  ( 𝑦𝑅  +s  𝑧 )  ∧  𝑞  ≤s  ( 𝑥  +s  𝑧 ) ) ) | 
						
							| 153 | 150 152 | bitri | ⊢ ( ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑞 ( 𝑞  =  ( 𝑦𝑅  +s  𝑧 )  ∧  𝑞  ≤s  ( 𝑥  +s  𝑧 ) )  ↔  ∃ 𝑞 ( ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) 𝑞  =  ( 𝑦𝑅  +s  𝑧 )  ∧  𝑞  ≤s  ( 𝑥  +s  𝑧 ) ) ) | 
						
							| 154 |  | ovex | ⊢ ( 𝑦𝑅  +s  𝑧 )  ∈  V | 
						
							| 155 |  | breq1 | ⊢ ( 𝑞  =  ( 𝑦𝑅  +s  𝑧 )  →  ( 𝑞  ≤s  ( 𝑥  +s  𝑧 )  ↔  ( 𝑦𝑅  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧 ) ) ) | 
						
							| 156 | 154 155 | ceqsexv | ⊢ ( ∃ 𝑞 ( 𝑞  =  ( 𝑦𝑅  +s  𝑧 )  ∧  𝑞  ≤s  ( 𝑥  +s  𝑧 ) )  ↔  ( 𝑦𝑅  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧 ) ) | 
						
							| 157 | 156 | rexbii | ⊢ ( ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑞 ( 𝑞  =  ( 𝑦𝑅  +s  𝑧 )  ∧  𝑞  ≤s  ( 𝑥  +s  𝑧 ) )  ↔  ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ( 𝑦𝑅  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧 ) ) | 
						
							| 158 | 153 157 | bitr3i | ⊢ ( ∃ 𝑞 ( ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) 𝑞  =  ( 𝑦𝑅  +s  𝑧 )  ∧  𝑞  ≤s  ( 𝑥  +s  𝑧 ) )  ↔  ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ( 𝑦𝑅  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧 ) ) | 
						
							| 159 | 149 158 | bitri | ⊢ ( ∃ 𝑞  ∈  { 𝑐  ∣  ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) 𝑐  =  ( 𝑦𝑅  +s  𝑧 ) } 𝑞  ≤s  ( 𝑥  +s  𝑧 )  ↔  ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ( 𝑦𝑅  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧 ) ) | 
						
							| 160 |  | eqeq1 | ⊢ ( 𝑑  =  𝑞  →  ( 𝑑  =  ( 𝑦  +s  𝑧𝑅 )  ↔  𝑞  =  ( 𝑦  +s  𝑧𝑅 ) ) ) | 
						
							| 161 | 160 | rexbidv | ⊢ ( 𝑑  =  𝑞  →  ( ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑑  =  ( 𝑦  +s  𝑧𝑅 )  ↔  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑞  =  ( 𝑦  +s  𝑧𝑅 ) ) ) | 
						
							| 162 | 161 | rexab | ⊢ ( ∃ 𝑞  ∈  { 𝑑  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑑  =  ( 𝑦  +s  𝑧𝑅 ) } 𝑞  ≤s  ( 𝑥  +s  𝑧 )  ↔  ∃ 𝑞 ( ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑞  =  ( 𝑦  +s  𝑧𝑅 )  ∧  𝑞  ≤s  ( 𝑥  +s  𝑧 ) ) ) | 
						
							| 163 |  | rexcom4 | ⊢ ( ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) ∃ 𝑞 ( 𝑞  =  ( 𝑦  +s  𝑧𝑅 )  ∧  𝑞  ≤s  ( 𝑥  +s  𝑧 ) )  ↔  ∃ 𝑞 ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) ( 𝑞  =  ( 𝑦  +s  𝑧𝑅 )  ∧  𝑞  ≤s  ( 𝑥  +s  𝑧 ) ) ) | 
						
							| 164 |  | r19.41v | ⊢ ( ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) ( 𝑞  =  ( 𝑦  +s  𝑧𝑅 )  ∧  𝑞  ≤s  ( 𝑥  +s  𝑧 ) )  ↔  ( ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑞  =  ( 𝑦  +s  𝑧𝑅 )  ∧  𝑞  ≤s  ( 𝑥  +s  𝑧 ) ) ) | 
						
							| 165 | 164 | exbii | ⊢ ( ∃ 𝑞 ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) ( 𝑞  =  ( 𝑦  +s  𝑧𝑅 )  ∧  𝑞  ≤s  ( 𝑥  +s  𝑧 ) )  ↔  ∃ 𝑞 ( ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑞  =  ( 𝑦  +s  𝑧𝑅 )  ∧  𝑞  ≤s  ( 𝑥  +s  𝑧 ) ) ) | 
						
							| 166 | 163 165 | bitri | ⊢ ( ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) ∃ 𝑞 ( 𝑞  =  ( 𝑦  +s  𝑧𝑅 )  ∧  𝑞  ≤s  ( 𝑥  +s  𝑧 ) )  ↔  ∃ 𝑞 ( ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑞  =  ( 𝑦  +s  𝑧𝑅 )  ∧  𝑞  ≤s  ( 𝑥  +s  𝑧 ) ) ) | 
						
							| 167 |  | ovex | ⊢ ( 𝑦  +s  𝑧𝑅 )  ∈  V | 
						
							| 168 |  | breq1 | ⊢ ( 𝑞  =  ( 𝑦  +s  𝑧𝑅 )  →  ( 𝑞  ≤s  ( 𝑥  +s  𝑧 )  ↔  ( 𝑦  +s  𝑧𝑅 )  ≤s  ( 𝑥  +s  𝑧 ) ) ) | 
						
							| 169 | 167 168 | ceqsexv | ⊢ ( ∃ 𝑞 ( 𝑞  =  ( 𝑦  +s  𝑧𝑅 )  ∧  𝑞  ≤s  ( 𝑥  +s  𝑧 ) )  ↔  ( 𝑦  +s  𝑧𝑅 )  ≤s  ( 𝑥  +s  𝑧 ) ) | 
						
							| 170 | 169 | rexbii | ⊢ ( ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) ∃ 𝑞 ( 𝑞  =  ( 𝑦  +s  𝑧𝑅 )  ∧  𝑞  ≤s  ( 𝑥  +s  𝑧 ) )  ↔  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) ( 𝑦  +s  𝑧𝑅 )  ≤s  ( 𝑥  +s  𝑧 ) ) | 
						
							| 171 | 166 170 | bitr3i | ⊢ ( ∃ 𝑞 ( ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑞  =  ( 𝑦  +s  𝑧𝑅 )  ∧  𝑞  ≤s  ( 𝑥  +s  𝑧 ) )  ↔  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) ( 𝑦  +s  𝑧𝑅 )  ≤s  ( 𝑥  +s  𝑧 ) ) | 
						
							| 172 | 162 171 | bitri | ⊢ ( ∃ 𝑞  ∈  { 𝑑  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑑  =  ( 𝑦  +s  𝑧𝑅 ) } 𝑞  ≤s  ( 𝑥  +s  𝑧 )  ↔  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) ( 𝑦  +s  𝑧𝑅 )  ≤s  ( 𝑥  +s  𝑧 ) ) | 
						
							| 173 | 159 172 | orbi12i | ⊢ ( ( ∃ 𝑞  ∈  { 𝑐  ∣  ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) 𝑐  =  ( 𝑦𝑅  +s  𝑧 ) } 𝑞  ≤s  ( 𝑥  +s  𝑧 )  ∨  ∃ 𝑞  ∈  { 𝑑  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑑  =  ( 𝑦  +s  𝑧𝑅 ) } 𝑞  ≤s  ( 𝑥  +s  𝑧 ) )  ↔  ( ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ( 𝑦𝑅  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧 )  ∨  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) ( 𝑦  +s  𝑧𝑅 )  ≤s  ( 𝑥  +s  𝑧 ) ) ) | 
						
							| 174 | 146 173 | bitri | ⊢ ( ∃ 𝑞  ∈  ( { 𝑐  ∣  ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) 𝑐  =  ( 𝑦𝑅  +s  𝑧 ) }  ∪  { 𝑑  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑑  =  ( 𝑦  +s  𝑧𝑅 ) } ) 𝑞  ≤s  ( 𝑥  +s  𝑧 )  ↔  ( ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ( 𝑦𝑅  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧 )  ∨  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) ( 𝑦  +s  𝑧𝑅 )  ≤s  ( 𝑥  +s  𝑧 ) ) ) | 
						
							| 175 |  | simpll2 | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑦𝑅  ∈  (  R  ‘ 𝑦 )  ∧  ( 𝑦𝑅  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧 ) ) )  →  𝑦  ∈   No  ) | 
						
							| 176 |  | rightssno | ⊢ (  R  ‘ 𝑦 )  ⊆   No | 
						
							| 177 | 176 | sseli | ⊢ ( 𝑦𝑅  ∈  (  R  ‘ 𝑦 )  →  𝑦𝑅  ∈   No  ) | 
						
							| 178 | 177 | adantr | ⊢ ( ( 𝑦𝑅  ∈  (  R  ‘ 𝑦 )  ∧  ( 𝑦𝑅  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧 ) )  →  𝑦𝑅  ∈   No  ) | 
						
							| 179 | 178 | adantl | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑦𝑅  ∈  (  R  ‘ 𝑦 )  ∧  ( 𝑦𝑅  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧 ) ) )  →  𝑦𝑅  ∈   No  ) | 
						
							| 180 |  | simpll1 | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑦𝑅  ∈  (  R  ‘ 𝑦 )  ∧  ( 𝑦𝑅  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧 ) ) )  →  𝑥  ∈   No  ) | 
						
							| 181 |  | rightval | ⊢ (  R  ‘ 𝑦 )  =  { 𝑦𝑅  ∈  (  O  ‘ (  bday  ‘ 𝑦 ) )  ∣  𝑦  <s  𝑦𝑅 } | 
						
							| 182 | 181 | reqabi | ⊢ ( 𝑦𝑅  ∈  (  R  ‘ 𝑦 )  ↔  ( 𝑦𝑅  ∈  (  O  ‘ (  bday  ‘ 𝑦 ) )  ∧  𝑦  <s  𝑦𝑅 ) ) | 
						
							| 183 | 182 | simprbi | ⊢ ( 𝑦𝑅  ∈  (  R  ‘ 𝑦 )  →  𝑦  <s  𝑦𝑅 ) | 
						
							| 184 | 183 | adantr | ⊢ ( ( 𝑦𝑅  ∈  (  R  ‘ 𝑦 )  ∧  ( 𝑦𝑅  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧 ) )  →  𝑦  <s  𝑦𝑅 ) | 
						
							| 185 | 184 | adantl | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑦𝑅  ∈  (  R  ‘ 𝑦 )  ∧  ( 𝑦𝑅  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧 ) ) )  →  𝑦  <s  𝑦𝑅 ) | 
						
							| 186 |  | simprr | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑦𝑅  ∈  (  R  ‘ 𝑦 )  ∧  ( 𝑦𝑅  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧 ) ) )  →  ( 𝑦𝑅  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧 ) ) | 
						
							| 187 |  | simpll3 | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑦𝑅  ∈  (  R  ‘ 𝑦 )  ∧  ( 𝑦𝑅  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧 ) ) )  →  𝑧  ∈   No  ) | 
						
							| 188 |  | sleadd1im | ⊢ ( ( 𝑦𝑅  ∈   No   ∧  𝑥  ∈   No   ∧  𝑧  ∈   No  )  →  ( ( 𝑦𝑅  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧 )  →  𝑦𝑅  ≤s  𝑥 ) ) | 
						
							| 189 | 179 180 187 188 | syl3anc | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑦𝑅  ∈  (  R  ‘ 𝑦 )  ∧  ( 𝑦𝑅  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧 ) ) )  →  ( ( 𝑦𝑅  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧 )  →  𝑦𝑅  ≤s  𝑥 ) ) | 
						
							| 190 | 186 189 | mpd | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑦𝑅  ∈  (  R  ‘ 𝑦 )  ∧  ( 𝑦𝑅  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧 ) ) )  →  𝑦𝑅  ≤s  𝑥 ) | 
						
							| 191 | 175 179 180 185 190 | sltletrd | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑦𝑅  ∈  (  R  ‘ 𝑦 )  ∧  ( 𝑦𝑅  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧 ) ) )  →  𝑦  <s  𝑥 ) | 
						
							| 192 | 191 | rexlimdvaa | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  →  ( ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ( 𝑦𝑅  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧 )  →  𝑦  <s  𝑥 ) ) | 
						
							| 193 |  | simpll2 | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑧𝑅  ∈  (  R  ‘ 𝑧 )  ∧  ( 𝑦  +s  𝑧𝑅 )  ≤s  ( 𝑥  +s  𝑧 ) ) )  →  𝑦  ∈   No  ) | 
						
							| 194 |  | rightssno | ⊢ (  R  ‘ 𝑧 )  ⊆   No | 
						
							| 195 | 194 | sseli | ⊢ ( 𝑧𝑅  ∈  (  R  ‘ 𝑧 )  →  𝑧𝑅  ∈   No  ) | 
						
							| 196 | 195 | adantr | ⊢ ( ( 𝑧𝑅  ∈  (  R  ‘ 𝑧 )  ∧  ( 𝑦  +s  𝑧𝑅 )  ≤s  ( 𝑥  +s  𝑧 ) )  →  𝑧𝑅  ∈   No  ) | 
						
							| 197 | 196 | adantl | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑧𝑅  ∈  (  R  ‘ 𝑧 )  ∧  ( 𝑦  +s  𝑧𝑅 )  ≤s  ( 𝑥  +s  𝑧 ) ) )  →  𝑧𝑅  ∈   No  ) | 
						
							| 198 | 193 197 | addscld | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑧𝑅  ∈  (  R  ‘ 𝑧 )  ∧  ( 𝑦  +s  𝑧𝑅 )  ≤s  ( 𝑥  +s  𝑧 ) ) )  →  ( 𝑦  +s  𝑧𝑅 )  ∈   No  ) | 
						
							| 199 |  | simpll1 | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑧𝑅  ∈  (  R  ‘ 𝑧 )  ∧  ( 𝑦  +s  𝑧𝑅 )  ≤s  ( 𝑥  +s  𝑧 ) ) )  →  𝑥  ∈   No  ) | 
						
							| 200 |  | simpll3 | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑧𝑅  ∈  (  R  ‘ 𝑧 )  ∧  ( 𝑦  +s  𝑧𝑅 )  ≤s  ( 𝑥  +s  𝑧 ) ) )  →  𝑧  ∈   No  ) | 
						
							| 201 | 199 200 | addscld | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑧𝑅  ∈  (  R  ‘ 𝑧 )  ∧  ( 𝑦  +s  𝑧𝑅 )  ≤s  ( 𝑥  +s  𝑧 ) ) )  →  ( 𝑥  +s  𝑧 )  ∈   No  ) | 
						
							| 202 | 199 197 | addscld | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑧𝑅  ∈  (  R  ‘ 𝑧 )  ∧  ( 𝑦  +s  𝑧𝑅 )  ≤s  ( 𝑥  +s  𝑧 ) ) )  →  ( 𝑥  +s  𝑧𝑅 )  ∈   No  ) | 
						
							| 203 |  | simprr | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑧𝑅  ∈  (  R  ‘ 𝑧 )  ∧  ( 𝑦  +s  𝑧𝑅 )  ≤s  ( 𝑥  +s  𝑧 ) ) )  →  ( 𝑦  +s  𝑧𝑅 )  ≤s  ( 𝑥  +s  𝑧 ) ) | 
						
							| 204 | 200 197 199 | 3jca | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑧𝑅  ∈  (  R  ‘ 𝑧 )  ∧  ( 𝑦  +s  𝑧𝑅 )  ≤s  ( 𝑥  +s  𝑧 ) ) )  →  ( 𝑧  ∈   No   ∧  𝑧𝑅  ∈   No   ∧  𝑥  ∈   No  ) ) | 
						
							| 205 |  | rightval | ⊢ (  R  ‘ 𝑧 )  =  { 𝑧𝑅  ∈  (  O  ‘ (  bday  ‘ 𝑧 ) )  ∣  𝑧  <s  𝑧𝑅 } | 
						
							| 206 | 205 | reqabi | ⊢ ( 𝑧𝑅  ∈  (  R  ‘ 𝑧 )  ↔  ( 𝑧𝑅  ∈  (  O  ‘ (  bday  ‘ 𝑧 ) )  ∧  𝑧  <s  𝑧𝑅 ) ) | 
						
							| 207 | 206 | simprbi | ⊢ ( 𝑧𝑅  ∈  (  R  ‘ 𝑧 )  →  𝑧  <s  𝑧𝑅 ) | 
						
							| 208 | 207 | adantr | ⊢ ( ( 𝑧𝑅  ∈  (  R  ‘ 𝑧 )  ∧  ( 𝑦  +s  𝑧𝑅 )  ≤s  ( 𝑥  +s  𝑧 ) )  →  𝑧  <s  𝑧𝑅 ) | 
						
							| 209 | 208 | adantl | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑧𝑅  ∈  (  R  ‘ 𝑧 )  ∧  ( 𝑦  +s  𝑧𝑅 )  ≤s  ( 𝑥  +s  𝑧 ) ) )  →  𝑧  <s  𝑧𝑅 ) | 
						
							| 210 |  | sltadd2im | ⊢ ( ( 𝑧  ∈   No   ∧  𝑧𝑅  ∈   No   ∧  𝑥  ∈   No  )  →  ( 𝑧  <s  𝑧𝑅  →  ( 𝑥  +s  𝑧 )  <s  ( 𝑥  +s  𝑧𝑅 ) ) ) | 
						
							| 211 | 204 209 210 | sylc | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑧𝑅  ∈  (  R  ‘ 𝑧 )  ∧  ( 𝑦  +s  𝑧𝑅 )  ≤s  ( 𝑥  +s  𝑧 ) ) )  →  ( 𝑥  +s  𝑧 )  <s  ( 𝑥  +s  𝑧𝑅 ) ) | 
						
							| 212 | 198 201 202 203 211 | slelttrd | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑧𝑅  ∈  (  R  ‘ 𝑧 )  ∧  ( 𝑦  +s  𝑧𝑅 )  ≤s  ( 𝑥  +s  𝑧 ) ) )  →  ( 𝑦  +s  𝑧𝑅 )  <s  ( 𝑥  +s  𝑧𝑅 ) ) | 
						
							| 213 |  | oveq2 | ⊢ ( 𝑧𝑂  =  𝑧𝑅  →  ( 𝑦  +s  𝑧𝑂 )  =  ( 𝑦  +s  𝑧𝑅 ) ) | 
						
							| 214 |  | oveq2 | ⊢ ( 𝑧𝑂  =  𝑧𝑅  →  ( 𝑥  +s  𝑧𝑂 )  =  ( 𝑥  +s  𝑧𝑅 ) ) | 
						
							| 215 | 213 214 | breq12d | ⊢ ( 𝑧𝑂  =  𝑧𝑅  →  ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  ↔  ( 𝑦  +s  𝑧𝑅 )  <s  ( 𝑥  +s  𝑧𝑅 ) ) ) | 
						
							| 216 | 215 | imbi1d | ⊢ ( 𝑧𝑂  =  𝑧𝑅  →  ( ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 )  ↔  ( ( 𝑦  +s  𝑧𝑅 )  <s  ( 𝑥  +s  𝑧𝑅 )  →  𝑦  <s  𝑥 ) ) ) | 
						
							| 217 |  | simplr3 | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑧𝑅  ∈  (  R  ‘ 𝑧 )  ∧  ( 𝑦  +s  𝑧𝑅 )  ≤s  ( 𝑥  +s  𝑧 ) ) )  →  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) | 
						
							| 218 |  | simprl | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑧𝑅  ∈  (  R  ‘ 𝑧 )  ∧  ( 𝑦  +s  𝑧𝑅 )  ≤s  ( 𝑥  +s  𝑧 ) ) )  →  𝑧𝑅  ∈  (  R  ‘ 𝑧 ) ) | 
						
							| 219 |  | elun2 | ⊢ ( 𝑧𝑅  ∈  (  R  ‘ 𝑧 )  →  𝑧𝑅  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ) | 
						
							| 220 | 218 219 | syl | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑧𝑅  ∈  (  R  ‘ 𝑧 )  ∧  ( 𝑦  +s  𝑧𝑅 )  ≤s  ( 𝑥  +s  𝑧 ) ) )  →  𝑧𝑅  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ) | 
						
							| 221 | 216 217 220 | rspcdva | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑧𝑅  ∈  (  R  ‘ 𝑧 )  ∧  ( 𝑦  +s  𝑧𝑅 )  ≤s  ( 𝑥  +s  𝑧 ) ) )  →  ( ( 𝑦  +s  𝑧𝑅 )  <s  ( 𝑥  +s  𝑧𝑅 )  →  𝑦  <s  𝑥 ) ) | 
						
							| 222 | 212 221 | mpd | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  ∧  ( 𝑧𝑅  ∈  (  R  ‘ 𝑧 )  ∧  ( 𝑦  +s  𝑧𝑅 )  ≤s  ( 𝑥  +s  𝑧 ) ) )  →  𝑦  <s  𝑥 ) | 
						
							| 223 | 222 | rexlimdvaa | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  →  ( ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) ( 𝑦  +s  𝑧𝑅 )  ≤s  ( 𝑥  +s  𝑧 )  →  𝑦  <s  𝑥 ) ) | 
						
							| 224 | 192 223 | jaod | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  →  ( ( ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ( 𝑦𝑅  +s  𝑧 )  ≤s  ( 𝑥  +s  𝑧 )  ∨  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) ( 𝑦  +s  𝑧𝑅 )  ≤s  ( 𝑥  +s  𝑧 ) )  →  𝑦  <s  𝑥 ) ) | 
						
							| 225 | 174 224 | biimtrid | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  →  ( ∃ 𝑞  ∈  ( { 𝑐  ∣  ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) 𝑐  =  ( 𝑦𝑅  +s  𝑧 ) }  ∪  { 𝑑  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑑  =  ( 𝑦  +s  𝑧𝑅 ) } ) 𝑞  ≤s  ( 𝑥  +s  𝑧 )  →  𝑦  <s  𝑥 ) ) | 
						
							| 226 | 145 225 | jaod | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  →  ( ( ∃ 𝑝  ∈  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  𝑧 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑏  =  ( 𝑥  +s  𝑧𝐿 ) } ) ( 𝑦  +s  𝑧 )  ≤s  𝑝  ∨  ∃ 𝑞  ∈  ( { 𝑐  ∣  ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) 𝑐  =  ( 𝑦𝑅  +s  𝑧 ) }  ∪  { 𝑑  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑑  =  ( 𝑦  +s  𝑧𝑅 ) } ) 𝑞  ≤s  ( 𝑥  +s  𝑧 ) )  →  𝑦  <s  𝑥 ) ) | 
						
							| 227 | 65 226 | sylbid | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) ) )  →  ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦  <s  𝑥 ) ) | 
						
							| 228 | 227 | ex | ⊢ ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  →  ( ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦𝑂  <s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥𝑂  +s  𝑧𝑂 )  →  𝑦  <s  𝑥𝑂 ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥𝑂  +s  𝑧 )  →  𝑦  <s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦𝑂  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦𝑂  <s  𝑥 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑦𝑂  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦𝑂  <s  𝑥 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑦  +s  𝑧𝑂 )  <s  ( 𝑥  +s  𝑧𝑂 )  →  𝑦  <s  𝑥 ) )  →  ( ( 𝑦  +s  𝑧 )  <s  ( 𝑥  +s  𝑧 )  →  𝑦  <s  𝑥 ) ) ) | 
						
							| 229 | 4 8 12 16 20 22 25 29 33 37 228 | no3inds | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( ( 𝐵  +s  𝐶 )  <s  ( 𝐴  +s  𝐶 )  →  𝐵  <s  𝐴 ) ) | 
						
							| 230 |  | addscl | ⊢ ( ( 𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐵  +s  𝐶 )  ∈   No  ) | 
						
							| 231 | 230 | 3adant1 | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐵  +s  𝐶 )  ∈   No  ) | 
						
							| 232 |  | addscl | ⊢ ( ( 𝐴  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐴  +s  𝐶 )  ∈   No  ) | 
						
							| 233 | 232 | 3adant2 | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐴  +s  𝐶 )  ∈   No  ) | 
						
							| 234 |  | sltnle | ⊢ ( ( ( 𝐵  +s  𝐶 )  ∈   No   ∧  ( 𝐴  +s  𝐶 )  ∈   No  )  →  ( ( 𝐵  +s  𝐶 )  <s  ( 𝐴  +s  𝐶 )  ↔  ¬  ( 𝐴  +s  𝐶 )  ≤s  ( 𝐵  +s  𝐶 ) ) ) | 
						
							| 235 | 231 233 234 | syl2anc | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( ( 𝐵  +s  𝐶 )  <s  ( 𝐴  +s  𝐶 )  ↔  ¬  ( 𝐴  +s  𝐶 )  ≤s  ( 𝐵  +s  𝐶 ) ) ) | 
						
							| 236 |  | sltnle | ⊢ ( ( 𝐵  ∈   No   ∧  𝐴  ∈   No  )  →  ( 𝐵  <s  𝐴  ↔  ¬  𝐴  ≤s  𝐵 ) ) | 
						
							| 237 | 236 | ancoms | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 𝐵  <s  𝐴  ↔  ¬  𝐴  ≤s  𝐵 ) ) | 
						
							| 238 | 237 | 3adant3 | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐵  <s  𝐴  ↔  ¬  𝐴  ≤s  𝐵 ) ) | 
						
							| 239 | 229 235 238 | 3imtr3d | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( ¬  ( 𝐴  +s  𝐶 )  ≤s  ( 𝐵  +s  𝐶 )  →  ¬  𝐴  ≤s  𝐵 ) ) | 
						
							| 240 | 239 | con4d | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐴  ≤s  𝐵  →  ( 𝐴  +s  𝐶 )  ≤s  ( 𝐵  +s  𝐶 ) ) ) | 
						
							| 241 |  | sleadd1im | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( ( 𝐴  +s  𝐶 )  ≤s  ( 𝐵  +s  𝐶 )  →  𝐴  ≤s  𝐵 ) ) | 
						
							| 242 | 240 241 | impbid | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐴  ≤s  𝐵  ↔  ( 𝐴  +s  𝐶 )  ≤s  ( 𝐵  +s  𝐶 ) ) ) |