Metamath Proof Explorer


Theorem addscut

Description: Demonstrate the cut properties of surreal addition. This gives us closure together with a pair of set-less-than relationships for surreal addition. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Hypotheses addscut.1 ( 𝜑𝑋 No )
addscut.2 ( 𝜑𝑌 No )
Assertion addscut ( 𝜑 → ( ( 𝑋 +s 𝑌 ) ∈ No ∧ ( { 𝑝 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) } ∪ { 𝑞 ∣ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) } ) <<s { ( 𝑋 +s 𝑌 ) } ∧ { ( 𝑋 +s 𝑌 ) } <<s ( { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) } ) ) )

Proof

Step Hyp Ref Expression
1 addscut.1 ( 𝜑𝑋 No )
2 addscut.2 ( 𝜑𝑌 No )
3 1 2 addscutlem ( 𝜑 → ( ( 𝑋 +s 𝑌 ) ∈ No ∧ ( { 𝑎 ∣ ∃ 𝑏 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑏 +s 𝑌 ) } ∪ { 𝑐 ∣ ∃ 𝑑 ∈ ( L ‘ 𝑌 ) 𝑐 = ( 𝑋 +s 𝑑 ) } ) <<s { ( 𝑋 +s 𝑌 ) } ∧ { ( 𝑋 +s 𝑌 ) } <<s ( { 𝑒 ∣ ∃ 𝑓 ∈ ( R ‘ 𝑋 ) 𝑒 = ( 𝑓 +s 𝑌 ) } ∪ { 𝑔 ∣ ∃ ∈ ( R ‘ 𝑌 ) 𝑔 = ( 𝑋 +s ) } ) ) )
4 biid ( ( 𝑋 +s 𝑌 ) ∈ No ↔ ( 𝑋 +s 𝑌 ) ∈ No )
5 oveq1 ( 𝑙 = 𝑏 → ( 𝑙 +s 𝑌 ) = ( 𝑏 +s 𝑌 ) )
6 5 eqeq2d ( 𝑙 = 𝑏 → ( 𝑝 = ( 𝑙 +s 𝑌 ) ↔ 𝑝 = ( 𝑏 +s 𝑌 ) ) )
7 6 cbvrexvw ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) ↔ ∃ 𝑏 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑏 +s 𝑌 ) )
8 eqeq1 ( 𝑝 = 𝑎 → ( 𝑝 = ( 𝑏 +s 𝑌 ) ↔ 𝑎 = ( 𝑏 +s 𝑌 ) ) )
9 8 rexbidv ( 𝑝 = 𝑎 → ( ∃ 𝑏 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑏 +s 𝑌 ) ↔ ∃ 𝑏 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑏 +s 𝑌 ) ) )
10 7 9 bitrid ( 𝑝 = 𝑎 → ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) ↔ ∃ 𝑏 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑏 +s 𝑌 ) ) )
11 10 cbvabv { 𝑝 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) } = { 𝑎 ∣ ∃ 𝑏 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑏 +s 𝑌 ) }
12 oveq2 ( 𝑚 = 𝑑 → ( 𝑋 +s 𝑚 ) = ( 𝑋 +s 𝑑 ) )
13 12 eqeq2d ( 𝑚 = 𝑑 → ( 𝑞 = ( 𝑋 +s 𝑚 ) ↔ 𝑞 = ( 𝑋 +s 𝑑 ) ) )
14 13 cbvrexvw ( ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) ↔ ∃ 𝑑 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑑 ) )
15 eqeq1 ( 𝑞 = 𝑐 → ( 𝑞 = ( 𝑋 +s 𝑑 ) ↔ 𝑐 = ( 𝑋 +s 𝑑 ) ) )
16 15 rexbidv ( 𝑞 = 𝑐 → ( ∃ 𝑑 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑑 ) ↔ ∃ 𝑑 ∈ ( L ‘ 𝑌 ) 𝑐 = ( 𝑋 +s 𝑑 ) ) )
17 14 16 bitrid ( 𝑞 = 𝑐 → ( ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) ↔ ∃ 𝑑 ∈ ( L ‘ 𝑌 ) 𝑐 = ( 𝑋 +s 𝑑 ) ) )
18 17 cbvabv { 𝑞 ∣ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) } = { 𝑐 ∣ ∃ 𝑑 ∈ ( L ‘ 𝑌 ) 𝑐 = ( 𝑋 +s 𝑑 ) }
19 11 18 uneq12i ( { 𝑝 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) } ∪ { 𝑞 ∣ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) } ) = ( { 𝑎 ∣ ∃ 𝑏 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑏 +s 𝑌 ) } ∪ { 𝑐 ∣ ∃ 𝑑 ∈ ( L ‘ 𝑌 ) 𝑐 = ( 𝑋 +s 𝑑 ) } )
20 19 breq1i ( ( { 𝑝 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) } ∪ { 𝑞 ∣ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) } ) <<s { ( 𝑋 +s 𝑌 ) } ↔ ( { 𝑎 ∣ ∃ 𝑏 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑏 +s 𝑌 ) } ∪ { 𝑐 ∣ ∃ 𝑑 ∈ ( L ‘ 𝑌 ) 𝑐 = ( 𝑋 +s 𝑑 ) } ) <<s { ( 𝑋 +s 𝑌 ) } )
21 oveq1 ( 𝑟 = 𝑓 → ( 𝑟 +s 𝑌 ) = ( 𝑓 +s 𝑌 ) )
22 21 eqeq2d ( 𝑟 = 𝑓 → ( 𝑤 = ( 𝑟 +s 𝑌 ) ↔ 𝑤 = ( 𝑓 +s 𝑌 ) ) )
23 22 cbvrexvw ( ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) ↔ ∃ 𝑓 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑓 +s 𝑌 ) )
24 eqeq1 ( 𝑤 = 𝑒 → ( 𝑤 = ( 𝑓 +s 𝑌 ) ↔ 𝑒 = ( 𝑓 +s 𝑌 ) ) )
25 24 rexbidv ( 𝑤 = 𝑒 → ( ∃ 𝑓 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑓 +s 𝑌 ) ↔ ∃ 𝑓 ∈ ( R ‘ 𝑋 ) 𝑒 = ( 𝑓 +s 𝑌 ) ) )
26 23 25 bitrid ( 𝑤 = 𝑒 → ( ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) ↔ ∃ 𝑓 ∈ ( R ‘ 𝑋 ) 𝑒 = ( 𝑓 +s 𝑌 ) ) )
27 26 cbvabv { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) } = { 𝑒 ∣ ∃ 𝑓 ∈ ( R ‘ 𝑋 ) 𝑒 = ( 𝑓 +s 𝑌 ) }
28 oveq2 ( 𝑠 = → ( 𝑋 +s 𝑠 ) = ( 𝑋 +s ) )
29 28 eqeq2d ( 𝑠 = → ( 𝑡 = ( 𝑋 +s 𝑠 ) ↔ 𝑡 = ( 𝑋 +s ) ) )
30 29 cbvrexvw ( ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) ↔ ∃ ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s ) )
31 eqeq1 ( 𝑡 = 𝑔 → ( 𝑡 = ( 𝑋 +s ) ↔ 𝑔 = ( 𝑋 +s ) ) )
32 31 rexbidv ( 𝑡 = 𝑔 → ( ∃ ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s ) ↔ ∃ ∈ ( R ‘ 𝑌 ) 𝑔 = ( 𝑋 +s ) ) )
33 30 32 bitrid ( 𝑡 = 𝑔 → ( ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) ↔ ∃ ∈ ( R ‘ 𝑌 ) 𝑔 = ( 𝑋 +s ) ) )
34 33 cbvabv { 𝑡 ∣ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) } = { 𝑔 ∣ ∃ ∈ ( R ‘ 𝑌 ) 𝑔 = ( 𝑋 +s ) }
35 27 34 uneq12i ( { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) } ) = ( { 𝑒 ∣ ∃ 𝑓 ∈ ( R ‘ 𝑋 ) 𝑒 = ( 𝑓 +s 𝑌 ) } ∪ { 𝑔 ∣ ∃ ∈ ( R ‘ 𝑌 ) 𝑔 = ( 𝑋 +s ) } )
36 35 breq2i ( { ( 𝑋 +s 𝑌 ) } <<s ( { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) } ) ↔ { ( 𝑋 +s 𝑌 ) } <<s ( { 𝑒 ∣ ∃ 𝑓 ∈ ( R ‘ 𝑋 ) 𝑒 = ( 𝑓 +s 𝑌 ) } ∪ { 𝑔 ∣ ∃ ∈ ( R ‘ 𝑌 ) 𝑔 = ( 𝑋 +s ) } ) )
37 4 20 36 3anbi123i ( ( ( 𝑋 +s 𝑌 ) ∈ No ∧ ( { 𝑝 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) } ∪ { 𝑞 ∣ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) } ) <<s { ( 𝑋 +s 𝑌 ) } ∧ { ( 𝑋 +s 𝑌 ) } <<s ( { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) } ) ) ↔ ( ( 𝑋 +s 𝑌 ) ∈ No ∧ ( { 𝑎 ∣ ∃ 𝑏 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑏 +s 𝑌 ) } ∪ { 𝑐 ∣ ∃ 𝑑 ∈ ( L ‘ 𝑌 ) 𝑐 = ( 𝑋 +s 𝑑 ) } ) <<s { ( 𝑋 +s 𝑌 ) } ∧ { ( 𝑋 +s 𝑌 ) } <<s ( { 𝑒 ∣ ∃ 𝑓 ∈ ( R ‘ 𝑋 ) 𝑒 = ( 𝑓 +s 𝑌 ) } ∪ { 𝑔 ∣ ∃ ∈ ( R ‘ 𝑌 ) 𝑔 = ( 𝑋 +s ) } ) ) )
38 3 37 sylibr ( 𝜑 → ( ( 𝑋 +s 𝑌 ) ∈ No ∧ ( { 𝑝 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) } ∪ { 𝑞 ∣ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) } ) <<s { ( 𝑋 +s 𝑌 ) } ∧ { ( 𝑋 +s 𝑌 ) } <<s ( { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) } ) ) )