Step |
Hyp |
Ref |
Expression |
1 |
|
addscut.1 |
⊢ ( 𝜑 → 𝑋 ∈ No ) |
2 |
|
addscut.2 |
⊢ ( 𝜑 → 𝑌 ∈ No ) |
3 |
1 2
|
addscutlem |
⊢ ( 𝜑 → ( ( 𝑋 +s 𝑌 ) ∈ No ∧ ( { 𝑎 ∣ ∃ 𝑏 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑏 +s 𝑌 ) } ∪ { 𝑐 ∣ ∃ 𝑑 ∈ ( L ‘ 𝑌 ) 𝑐 = ( 𝑋 +s 𝑑 ) } ) <<s { ( 𝑋 +s 𝑌 ) } ∧ { ( 𝑋 +s 𝑌 ) } <<s ( { 𝑒 ∣ ∃ 𝑓 ∈ ( R ‘ 𝑋 ) 𝑒 = ( 𝑓 +s 𝑌 ) } ∪ { 𝑔 ∣ ∃ ℎ ∈ ( R ‘ 𝑌 ) 𝑔 = ( 𝑋 +s ℎ ) } ) ) ) |
4 |
|
biid |
⊢ ( ( 𝑋 +s 𝑌 ) ∈ No ↔ ( 𝑋 +s 𝑌 ) ∈ No ) |
5 |
|
oveq1 |
⊢ ( 𝑙 = 𝑏 → ( 𝑙 +s 𝑌 ) = ( 𝑏 +s 𝑌 ) ) |
6 |
5
|
eqeq2d |
⊢ ( 𝑙 = 𝑏 → ( 𝑝 = ( 𝑙 +s 𝑌 ) ↔ 𝑝 = ( 𝑏 +s 𝑌 ) ) ) |
7 |
6
|
cbvrexvw |
⊢ ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) ↔ ∃ 𝑏 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑏 +s 𝑌 ) ) |
8 |
|
eqeq1 |
⊢ ( 𝑝 = 𝑎 → ( 𝑝 = ( 𝑏 +s 𝑌 ) ↔ 𝑎 = ( 𝑏 +s 𝑌 ) ) ) |
9 |
8
|
rexbidv |
⊢ ( 𝑝 = 𝑎 → ( ∃ 𝑏 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑏 +s 𝑌 ) ↔ ∃ 𝑏 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑏 +s 𝑌 ) ) ) |
10 |
7 9
|
bitrid |
⊢ ( 𝑝 = 𝑎 → ( ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) ↔ ∃ 𝑏 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑏 +s 𝑌 ) ) ) |
11 |
10
|
cbvabv |
⊢ { 𝑝 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) } = { 𝑎 ∣ ∃ 𝑏 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑏 +s 𝑌 ) } |
12 |
|
oveq2 |
⊢ ( 𝑚 = 𝑑 → ( 𝑋 +s 𝑚 ) = ( 𝑋 +s 𝑑 ) ) |
13 |
12
|
eqeq2d |
⊢ ( 𝑚 = 𝑑 → ( 𝑞 = ( 𝑋 +s 𝑚 ) ↔ 𝑞 = ( 𝑋 +s 𝑑 ) ) ) |
14 |
13
|
cbvrexvw |
⊢ ( ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) ↔ ∃ 𝑑 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑑 ) ) |
15 |
|
eqeq1 |
⊢ ( 𝑞 = 𝑐 → ( 𝑞 = ( 𝑋 +s 𝑑 ) ↔ 𝑐 = ( 𝑋 +s 𝑑 ) ) ) |
16 |
15
|
rexbidv |
⊢ ( 𝑞 = 𝑐 → ( ∃ 𝑑 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑑 ) ↔ ∃ 𝑑 ∈ ( L ‘ 𝑌 ) 𝑐 = ( 𝑋 +s 𝑑 ) ) ) |
17 |
14 16
|
bitrid |
⊢ ( 𝑞 = 𝑐 → ( ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) ↔ ∃ 𝑑 ∈ ( L ‘ 𝑌 ) 𝑐 = ( 𝑋 +s 𝑑 ) ) ) |
18 |
17
|
cbvabv |
⊢ { 𝑞 ∣ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) } = { 𝑐 ∣ ∃ 𝑑 ∈ ( L ‘ 𝑌 ) 𝑐 = ( 𝑋 +s 𝑑 ) } |
19 |
11 18
|
uneq12i |
⊢ ( { 𝑝 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) } ∪ { 𝑞 ∣ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) } ) = ( { 𝑎 ∣ ∃ 𝑏 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑏 +s 𝑌 ) } ∪ { 𝑐 ∣ ∃ 𝑑 ∈ ( L ‘ 𝑌 ) 𝑐 = ( 𝑋 +s 𝑑 ) } ) |
20 |
19
|
breq1i |
⊢ ( ( { 𝑝 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) } ∪ { 𝑞 ∣ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) } ) <<s { ( 𝑋 +s 𝑌 ) } ↔ ( { 𝑎 ∣ ∃ 𝑏 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑏 +s 𝑌 ) } ∪ { 𝑐 ∣ ∃ 𝑑 ∈ ( L ‘ 𝑌 ) 𝑐 = ( 𝑋 +s 𝑑 ) } ) <<s { ( 𝑋 +s 𝑌 ) } ) |
21 |
|
oveq1 |
⊢ ( 𝑟 = 𝑓 → ( 𝑟 +s 𝑌 ) = ( 𝑓 +s 𝑌 ) ) |
22 |
21
|
eqeq2d |
⊢ ( 𝑟 = 𝑓 → ( 𝑤 = ( 𝑟 +s 𝑌 ) ↔ 𝑤 = ( 𝑓 +s 𝑌 ) ) ) |
23 |
22
|
cbvrexvw |
⊢ ( ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) ↔ ∃ 𝑓 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑓 +s 𝑌 ) ) |
24 |
|
eqeq1 |
⊢ ( 𝑤 = 𝑒 → ( 𝑤 = ( 𝑓 +s 𝑌 ) ↔ 𝑒 = ( 𝑓 +s 𝑌 ) ) ) |
25 |
24
|
rexbidv |
⊢ ( 𝑤 = 𝑒 → ( ∃ 𝑓 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑓 +s 𝑌 ) ↔ ∃ 𝑓 ∈ ( R ‘ 𝑋 ) 𝑒 = ( 𝑓 +s 𝑌 ) ) ) |
26 |
23 25
|
bitrid |
⊢ ( 𝑤 = 𝑒 → ( ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) ↔ ∃ 𝑓 ∈ ( R ‘ 𝑋 ) 𝑒 = ( 𝑓 +s 𝑌 ) ) ) |
27 |
26
|
cbvabv |
⊢ { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) } = { 𝑒 ∣ ∃ 𝑓 ∈ ( R ‘ 𝑋 ) 𝑒 = ( 𝑓 +s 𝑌 ) } |
28 |
|
oveq2 |
⊢ ( 𝑠 = ℎ → ( 𝑋 +s 𝑠 ) = ( 𝑋 +s ℎ ) ) |
29 |
28
|
eqeq2d |
⊢ ( 𝑠 = ℎ → ( 𝑡 = ( 𝑋 +s 𝑠 ) ↔ 𝑡 = ( 𝑋 +s ℎ ) ) ) |
30 |
29
|
cbvrexvw |
⊢ ( ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) ↔ ∃ ℎ ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s ℎ ) ) |
31 |
|
eqeq1 |
⊢ ( 𝑡 = 𝑔 → ( 𝑡 = ( 𝑋 +s ℎ ) ↔ 𝑔 = ( 𝑋 +s ℎ ) ) ) |
32 |
31
|
rexbidv |
⊢ ( 𝑡 = 𝑔 → ( ∃ ℎ ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s ℎ ) ↔ ∃ ℎ ∈ ( R ‘ 𝑌 ) 𝑔 = ( 𝑋 +s ℎ ) ) ) |
33 |
30 32
|
bitrid |
⊢ ( 𝑡 = 𝑔 → ( ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) ↔ ∃ ℎ ∈ ( R ‘ 𝑌 ) 𝑔 = ( 𝑋 +s ℎ ) ) ) |
34 |
33
|
cbvabv |
⊢ { 𝑡 ∣ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) } = { 𝑔 ∣ ∃ ℎ ∈ ( R ‘ 𝑌 ) 𝑔 = ( 𝑋 +s ℎ ) } |
35 |
27 34
|
uneq12i |
⊢ ( { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) } ) = ( { 𝑒 ∣ ∃ 𝑓 ∈ ( R ‘ 𝑋 ) 𝑒 = ( 𝑓 +s 𝑌 ) } ∪ { 𝑔 ∣ ∃ ℎ ∈ ( R ‘ 𝑌 ) 𝑔 = ( 𝑋 +s ℎ ) } ) |
36 |
35
|
breq2i |
⊢ ( { ( 𝑋 +s 𝑌 ) } <<s ( { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) } ) ↔ { ( 𝑋 +s 𝑌 ) } <<s ( { 𝑒 ∣ ∃ 𝑓 ∈ ( R ‘ 𝑋 ) 𝑒 = ( 𝑓 +s 𝑌 ) } ∪ { 𝑔 ∣ ∃ ℎ ∈ ( R ‘ 𝑌 ) 𝑔 = ( 𝑋 +s ℎ ) } ) ) |
37 |
4 20 36
|
3anbi123i |
⊢ ( ( ( 𝑋 +s 𝑌 ) ∈ No ∧ ( { 𝑝 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) } ∪ { 𝑞 ∣ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) } ) <<s { ( 𝑋 +s 𝑌 ) } ∧ { ( 𝑋 +s 𝑌 ) } <<s ( { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) } ) ) ↔ ( ( 𝑋 +s 𝑌 ) ∈ No ∧ ( { 𝑎 ∣ ∃ 𝑏 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑏 +s 𝑌 ) } ∪ { 𝑐 ∣ ∃ 𝑑 ∈ ( L ‘ 𝑌 ) 𝑐 = ( 𝑋 +s 𝑑 ) } ) <<s { ( 𝑋 +s 𝑌 ) } ∧ { ( 𝑋 +s 𝑌 ) } <<s ( { 𝑒 ∣ ∃ 𝑓 ∈ ( R ‘ 𝑋 ) 𝑒 = ( 𝑓 +s 𝑌 ) } ∪ { 𝑔 ∣ ∃ ℎ ∈ ( R ‘ 𝑌 ) 𝑔 = ( 𝑋 +s ℎ ) } ) ) ) |
38 |
3 37
|
sylibr |
⊢ ( 𝜑 → ( ( 𝑋 +s 𝑌 ) ∈ No ∧ ( { 𝑝 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) } ∪ { 𝑞 ∣ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) } ) <<s { ( 𝑋 +s 𝑌 ) } ∧ { ( 𝑋 +s 𝑌 ) } <<s ( { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) } ) ) ) |