Step |
Hyp |
Ref |
Expression |
1 |
|
addscut.1 |
|- ( ph -> X e. No ) |
2 |
|
addscut.2 |
|- ( ph -> Y e. No ) |
3 |
1 2
|
addscutlem |
|- ( ph -> ( ( X +s Y ) e. No /\ ( { a | E. b e. ( _Left ` X ) a = ( b +s Y ) } u. { c | E. d e. ( _Left ` Y ) c = ( X +s d ) } ) < |
4 |
|
biid |
|- ( ( X +s Y ) e. No <-> ( X +s Y ) e. No ) |
5 |
|
oveq1 |
|- ( l = b -> ( l +s Y ) = ( b +s Y ) ) |
6 |
5
|
eqeq2d |
|- ( l = b -> ( p = ( l +s Y ) <-> p = ( b +s Y ) ) ) |
7 |
6
|
cbvrexvw |
|- ( E. l e. ( _Left ` X ) p = ( l +s Y ) <-> E. b e. ( _Left ` X ) p = ( b +s Y ) ) |
8 |
|
eqeq1 |
|- ( p = a -> ( p = ( b +s Y ) <-> a = ( b +s Y ) ) ) |
9 |
8
|
rexbidv |
|- ( p = a -> ( E. b e. ( _Left ` X ) p = ( b +s Y ) <-> E. b e. ( _Left ` X ) a = ( b +s Y ) ) ) |
10 |
7 9
|
bitrid |
|- ( p = a -> ( E. l e. ( _Left ` X ) p = ( l +s Y ) <-> E. b e. ( _Left ` X ) a = ( b +s Y ) ) ) |
11 |
10
|
cbvabv |
|- { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } = { a | E. b e. ( _Left ` X ) a = ( b +s Y ) } |
12 |
|
oveq2 |
|- ( m = d -> ( X +s m ) = ( X +s d ) ) |
13 |
12
|
eqeq2d |
|- ( m = d -> ( q = ( X +s m ) <-> q = ( X +s d ) ) ) |
14 |
13
|
cbvrexvw |
|- ( E. m e. ( _Left ` Y ) q = ( X +s m ) <-> E. d e. ( _Left ` Y ) q = ( X +s d ) ) |
15 |
|
eqeq1 |
|- ( q = c -> ( q = ( X +s d ) <-> c = ( X +s d ) ) ) |
16 |
15
|
rexbidv |
|- ( q = c -> ( E. d e. ( _Left ` Y ) q = ( X +s d ) <-> E. d e. ( _Left ` Y ) c = ( X +s d ) ) ) |
17 |
14 16
|
bitrid |
|- ( q = c -> ( E. m e. ( _Left ` Y ) q = ( X +s m ) <-> E. d e. ( _Left ` Y ) c = ( X +s d ) ) ) |
18 |
17
|
cbvabv |
|- { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } = { c | E. d e. ( _Left ` Y ) c = ( X +s d ) } |
19 |
11 18
|
uneq12i |
|- ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) = ( { a | E. b e. ( _Left ` X ) a = ( b +s Y ) } u. { c | E. d e. ( _Left ` Y ) c = ( X +s d ) } ) |
20 |
19
|
breq1i |
|- ( ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) < ( { a | E. b e. ( _Left ` X ) a = ( b +s Y ) } u. { c | E. d e. ( _Left ` Y ) c = ( X +s d ) } ) < |
21 |
|
oveq1 |
|- ( r = f -> ( r +s Y ) = ( f +s Y ) ) |
22 |
21
|
eqeq2d |
|- ( r = f -> ( w = ( r +s Y ) <-> w = ( f +s Y ) ) ) |
23 |
22
|
cbvrexvw |
|- ( E. r e. ( _Right ` X ) w = ( r +s Y ) <-> E. f e. ( _Right ` X ) w = ( f +s Y ) ) |
24 |
|
eqeq1 |
|- ( w = e -> ( w = ( f +s Y ) <-> e = ( f +s Y ) ) ) |
25 |
24
|
rexbidv |
|- ( w = e -> ( E. f e. ( _Right ` X ) w = ( f +s Y ) <-> E. f e. ( _Right ` X ) e = ( f +s Y ) ) ) |
26 |
23 25
|
bitrid |
|- ( w = e -> ( E. r e. ( _Right ` X ) w = ( r +s Y ) <-> E. f e. ( _Right ` X ) e = ( f +s Y ) ) ) |
27 |
26
|
cbvabv |
|- { w | E. r e. ( _Right ` X ) w = ( r +s Y ) } = { e | E. f e. ( _Right ` X ) e = ( f +s Y ) } |
28 |
|
oveq2 |
|- ( s = h -> ( X +s s ) = ( X +s h ) ) |
29 |
28
|
eqeq2d |
|- ( s = h -> ( t = ( X +s s ) <-> t = ( X +s h ) ) ) |
30 |
29
|
cbvrexvw |
|- ( E. s e. ( _Right ` Y ) t = ( X +s s ) <-> E. h e. ( _Right ` Y ) t = ( X +s h ) ) |
31 |
|
eqeq1 |
|- ( t = g -> ( t = ( X +s h ) <-> g = ( X +s h ) ) ) |
32 |
31
|
rexbidv |
|- ( t = g -> ( E. h e. ( _Right ` Y ) t = ( X +s h ) <-> E. h e. ( _Right ` Y ) g = ( X +s h ) ) ) |
33 |
30 32
|
bitrid |
|- ( t = g -> ( E. s e. ( _Right ` Y ) t = ( X +s s ) <-> E. h e. ( _Right ` Y ) g = ( X +s h ) ) ) |
34 |
33
|
cbvabv |
|- { t | E. s e. ( _Right ` Y ) t = ( X +s s ) } = { g | E. h e. ( _Right ` Y ) g = ( X +s h ) } |
35 |
27 34
|
uneq12i |
|- ( { w | E. r e. ( _Right ` X ) w = ( r +s Y ) } u. { t | E. s e. ( _Right ` Y ) t = ( X +s s ) } ) = ( { e | E. f e. ( _Right ` X ) e = ( f +s Y ) } u. { g | E. h e. ( _Right ` Y ) g = ( X +s h ) } ) |
36 |
35
|
breq2i |
|- ( { ( X +s Y ) } < { ( X +s Y ) } < |
37 |
4 20 36
|
3anbi123i |
|- ( ( ( X +s Y ) e. No /\ ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) < ( ( X +s Y ) e. No /\ ( { a | E. b e. ( _Left ` X ) a = ( b +s Y ) } u. { c | E. d e. ( _Left ` Y ) c = ( X +s d ) } ) < |
38 |
3 37
|
sylibr |
|- ( ph -> ( ( X +s Y ) e. No /\ ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) < |