| Step |
Hyp |
Ref |
Expression |
| 1 |
|
addscut.1 |
|
| 2 |
|
addscut.2 |
|
| 3 |
1 2
|
addscutlem |
|
| 4 |
|
biid |
|
| 5 |
|
oveq1 |
|
| 6 |
5
|
eqeq2d |
|
| 7 |
6
|
cbvrexvw |
|
| 8 |
|
eqeq1 |
|
| 9 |
8
|
rexbidv |
|
| 10 |
7 9
|
bitrid |
|
| 11 |
10
|
cbvabv |
|
| 12 |
|
oveq2 |
|
| 13 |
12
|
eqeq2d |
|
| 14 |
13
|
cbvrexvw |
|
| 15 |
|
eqeq1 |
|
| 16 |
15
|
rexbidv |
|
| 17 |
14 16
|
bitrid |
|
| 18 |
17
|
cbvabv |
|
| 19 |
11 18
|
uneq12i |
|
| 20 |
19
|
breq1i |
|
| 21 |
|
oveq1 |
|
| 22 |
21
|
eqeq2d |
|
| 23 |
22
|
cbvrexvw |
|
| 24 |
|
eqeq1 |
|
| 25 |
24
|
rexbidv |
|
| 26 |
23 25
|
bitrid |
|
| 27 |
26
|
cbvabv |
|
| 28 |
|
oveq2 |
|
| 29 |
28
|
eqeq2d |
|
| 30 |
29
|
cbvrexvw |
|
| 31 |
|
eqeq1 |
|
| 32 |
31
|
rexbidv |
|
| 33 |
30 32
|
bitrid |
|
| 34 |
33
|
cbvabv |
|
| 35 |
27 34
|
uneq12i |
|
| 36 |
35
|
breq2i |
|
| 37 |
4 20 36
|
3anbi123i |
|
| 38 |
3 37
|
sylibr |
|