Metamath Proof Explorer


Theorem addscut2

Description: Show that the cut involved in surreal addition is legitimate. (Contributed by Scott Fenton, 8-Mar-2025)

Ref Expression
Hypotheses addscut.1 φXNo
addscut.2 φYNo
Assertion addscut2 Could not format assertion : No typesetting found for |- ( ph -> ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) <

Proof

Step Hyp Ref Expression
1 addscut.1 φXNo
2 addscut.2 φYNo
3 1 2 addscut Could not format ( ph -> ( ( X +s Y ) e. No /\ ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) < ( ( X +s Y ) e. No /\ ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) <
4 3anass Could not format ( ( ( X +s Y ) e. No /\ ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) < ( ( X +s Y ) e. No /\ ( ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) < ( ( X +s Y ) e. No /\ ( ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) <
5 3 4 sylib Could not format ( ph -> ( ( X +s Y ) e. No /\ ( ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) < ( ( X +s Y ) e. No /\ ( ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) <
6 5 simprd Could not format ( ph -> ( ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) < ( ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) <
7 ovex Could not format ( X +s Y ) e. _V : No typesetting found for |- ( X +s Y ) e. _V with typecode |-
8 7 snnz Could not format { ( X +s Y ) } =/= (/) : No typesetting found for |- { ( X +s Y ) } =/= (/) with typecode |-
9 sslttr Could not format ( ( ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) < ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) < ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) <
10 8 9 mp3an3 Could not format ( ( ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) < ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) < ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) <
11 6 10 syl Could not format ( ph -> ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) < ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) <