| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sltadd1im | ⊢ ( ( 𝐵  ∈   No   ∧  𝐴  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐵  <s  𝐴  →  ( 𝐵  +s  𝐶 )  <s  ( 𝐴  +s  𝐶 ) ) ) | 
						
							| 2 | 1 | 3com12 | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐵  <s  𝐴  →  ( 𝐵  +s  𝐶 )  <s  ( 𝐴  +s  𝐶 ) ) ) | 
						
							| 3 |  | sltnle | ⊢ ( ( 𝐵  ∈   No   ∧  𝐴  ∈   No  )  →  ( 𝐵  <s  𝐴  ↔  ¬  𝐴  ≤s  𝐵 ) ) | 
						
							| 4 | 3 | ancoms | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 𝐵  <s  𝐴  ↔  ¬  𝐴  ≤s  𝐵 ) ) | 
						
							| 5 | 4 | 3adant3 | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐵  <s  𝐴  ↔  ¬  𝐴  ≤s  𝐵 ) ) | 
						
							| 6 |  | addscl | ⊢ ( ( 𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐵  +s  𝐶 )  ∈   No  ) | 
						
							| 7 | 6 | 3adant1 | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐵  +s  𝐶 )  ∈   No  ) | 
						
							| 8 |  | addscl | ⊢ ( ( 𝐴  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐴  +s  𝐶 )  ∈   No  ) | 
						
							| 9 |  | sltnle | ⊢ ( ( ( 𝐵  +s  𝐶 )  ∈   No   ∧  ( 𝐴  +s  𝐶 )  ∈   No  )  →  ( ( 𝐵  +s  𝐶 )  <s  ( 𝐴  +s  𝐶 )  ↔  ¬  ( 𝐴  +s  𝐶 )  ≤s  ( 𝐵  +s  𝐶 ) ) ) | 
						
							| 10 | 7 8 9 | 3imp3i2an | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( ( 𝐵  +s  𝐶 )  <s  ( 𝐴  +s  𝐶 )  ↔  ¬  ( 𝐴  +s  𝐶 )  ≤s  ( 𝐵  +s  𝐶 ) ) ) | 
						
							| 11 | 2 5 10 | 3imtr3d | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( ¬  𝐴  ≤s  𝐵  →  ¬  ( 𝐴  +s  𝐶 )  ≤s  ( 𝐵  +s  𝐶 ) ) ) | 
						
							| 12 | 11 | con4d | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( ( 𝐴  +s  𝐶 )  ≤s  ( 𝐵  +s  𝐶 )  →  𝐴  ≤s  𝐵 ) ) |