Metamath Proof Explorer


Theorem sleadd2im

Description: Surreal less-than or equal cancels under addition. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Assertion sleadd2im ( ( ðī ∈ No ∧ ðĩ ∈ No ∧ ðķ ∈ No ) → ( ( ðķ +s ðī ) â‰Īs ( ðķ +s ðĩ ) → ðī â‰Īs ðĩ ) )

Proof

Step Hyp Ref Expression
1 addscom âŠĒ ( ( ðī ∈ No ∧ ðķ ∈ No ) → ( ðī +s ðķ ) = ( ðķ +s ðī ) )
2 1 3adant2 âŠĒ ( ( ðī ∈ No ∧ ðĩ ∈ No ∧ ðķ ∈ No ) → ( ðī +s ðķ ) = ( ðķ +s ðī ) )
3 addscom âŠĒ ( ( ðĩ ∈ No ∧ ðķ ∈ No ) → ( ðĩ +s ðķ ) = ( ðķ +s ðĩ ) )
4 3 3adant1 âŠĒ ( ( ðī ∈ No ∧ ðĩ ∈ No ∧ ðķ ∈ No ) → ( ðĩ +s ðķ ) = ( ðķ +s ðĩ ) )
5 2 4 breq12d âŠĒ ( ( ðī ∈ No ∧ ðĩ ∈ No ∧ ðķ ∈ No ) → ( ( ðī +s ðķ ) â‰Īs ( ðĩ +s ðķ ) ↔ ( ðķ +s ðī ) â‰Īs ( ðķ +s ðĩ ) ) )
6 sleadd1im âŠĒ ( ( ðī ∈ No ∧ ðĩ ∈ No ∧ ðķ ∈ No ) → ( ( ðī +s ðķ ) â‰Īs ( ðĩ +s ðķ ) → ðī â‰Īs ðĩ ) )
7 5 6 sylbird âŠĒ ( ( ðī ∈ No ∧ ðĩ ∈ No ∧ ðķ ∈ No ) → ( ( ðķ +s ðī ) â‰Īs ( ðķ +s ðĩ ) → ðī â‰Īs ðĩ ) )