| Step | Hyp | Ref | Expression | 
						
							| 1 |  | addscom | ⊢ ( ( 𝐴  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐴  +s  𝐶 )  =  ( 𝐶  +s  𝐴 ) ) | 
						
							| 2 | 1 | 3adant2 | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐴  +s  𝐶 )  =  ( 𝐶  +s  𝐴 ) ) | 
						
							| 3 |  | addscom | ⊢ ( ( 𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐵  +s  𝐶 )  =  ( 𝐶  +s  𝐵 ) ) | 
						
							| 4 | 3 | 3adant1 | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐵  +s  𝐶 )  =  ( 𝐶  +s  𝐵 ) ) | 
						
							| 5 | 2 4 | breq12d | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( ( 𝐴  +s  𝐶 )  ≤s  ( 𝐵  +s  𝐶 )  ↔  ( 𝐶  +s  𝐴 )  ≤s  ( 𝐶  +s  𝐵 ) ) ) | 
						
							| 6 |  | sleadd1im | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( ( 𝐴  +s  𝐶 )  ≤s  ( 𝐵  +s  𝐶 )  →  𝐴  ≤s  𝐵 ) ) | 
						
							| 7 | 5 6 | sylbird | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( ( 𝐶  +s  𝐴 )  ≤s  ( 𝐶  +s  𝐵 )  →  𝐴  ≤s  𝐵 ) ) |