Metamath Proof Explorer


Theorem sleadd2im

Description: Surreal less-than or equal cancels under addition. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Assertion sleadd2im
|- ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( C +s A ) <_s ( C +s B ) -> A <_s B ) )

Proof

Step Hyp Ref Expression
1 addscom
 |-  ( ( A e. No /\ C e. No ) -> ( A +s C ) = ( C +s A ) )
2 1 3adant2
 |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( A +s C ) = ( C +s A ) )
3 addscom
 |-  ( ( B e. No /\ C e. No ) -> ( B +s C ) = ( C +s B ) )
4 3 3adant1
 |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( B +s C ) = ( C +s B ) )
5 2 4 breq12d
 |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A +s C ) <_s ( B +s C ) <-> ( C +s A ) <_s ( C +s B ) ) )
6 sleadd1im
 |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A +s C ) <_s ( B +s C ) -> A <_s B ) )
7 5 6 sylbird
 |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( C +s A ) <_s ( C +s B ) -> A <_s B ) )