Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
⊢ ( 𝑥 = 𝑥O → ( 𝑥 +s 𝑦 ) = ( 𝑥O +s 𝑦 ) ) |
2 |
|
oveq2 |
⊢ ( 𝑥 = 𝑥O → ( 𝑦 +s 𝑥 ) = ( 𝑦 +s 𝑥O ) ) |
3 |
1 2
|
eqeq12d |
⊢ ( 𝑥 = 𝑥O → ( ( 𝑥 +s 𝑦 ) = ( 𝑦 +s 𝑥 ) ↔ ( 𝑥O +s 𝑦 ) = ( 𝑦 +s 𝑥O ) ) ) |
4 |
|
oveq2 |
⊢ ( 𝑦 = 𝑦O → ( 𝑥O +s 𝑦 ) = ( 𝑥O +s 𝑦O ) ) |
5 |
|
oveq1 |
⊢ ( 𝑦 = 𝑦O → ( 𝑦 +s 𝑥O ) = ( 𝑦O +s 𝑥O ) ) |
6 |
4 5
|
eqeq12d |
⊢ ( 𝑦 = 𝑦O → ( ( 𝑥O +s 𝑦 ) = ( 𝑦 +s 𝑥O ) ↔ ( 𝑥O +s 𝑦O ) = ( 𝑦O +s 𝑥O ) ) ) |
7 |
|
oveq1 |
⊢ ( 𝑥 = 𝑥O → ( 𝑥 +s 𝑦O ) = ( 𝑥O +s 𝑦O ) ) |
8 |
|
oveq2 |
⊢ ( 𝑥 = 𝑥O → ( 𝑦O +s 𝑥 ) = ( 𝑦O +s 𝑥O ) ) |
9 |
7 8
|
eqeq12d |
⊢ ( 𝑥 = 𝑥O → ( ( 𝑥 +s 𝑦O ) = ( 𝑦O +s 𝑥 ) ↔ ( 𝑥O +s 𝑦O ) = ( 𝑦O +s 𝑥O ) ) ) |
10 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 +s 𝑦 ) = ( 𝐴 +s 𝑦 ) ) |
11 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑦 +s 𝑥 ) = ( 𝑦 +s 𝐴 ) ) |
12 |
10 11
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 +s 𝑦 ) = ( 𝑦 +s 𝑥 ) ↔ ( 𝐴 +s 𝑦 ) = ( 𝑦 +s 𝐴 ) ) ) |
13 |
|
oveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 +s 𝑦 ) = ( 𝐴 +s 𝐵 ) ) |
14 |
|
oveq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 +s 𝐴 ) = ( 𝐵 +s 𝐴 ) ) |
15 |
13 14
|
eqeq12d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 +s 𝑦 ) = ( 𝑦 +s 𝐴 ) ↔ ( 𝐴 +s 𝐵 ) = ( 𝐵 +s 𝐴 ) ) ) |
16 |
|
simpr2 |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥O +s 𝑦O ) = ( 𝑦O +s 𝑥O ) ∧ ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥O +s 𝑦 ) = ( 𝑦 +s 𝑥O ) ∧ ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦O ) = ( 𝑦O +s 𝑥 ) ) ) → ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥O +s 𝑦 ) = ( 𝑦 +s 𝑥O ) ) |
17 |
|
elun1 |
⊢ ( 𝑙 ∈ ( L ‘ 𝑥 ) → 𝑙 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ) |
18 |
|
oveq1 |
⊢ ( 𝑥O = 𝑙 → ( 𝑥O +s 𝑦 ) = ( 𝑙 +s 𝑦 ) ) |
19 |
|
oveq2 |
⊢ ( 𝑥O = 𝑙 → ( 𝑦 +s 𝑥O ) = ( 𝑦 +s 𝑙 ) ) |
20 |
18 19
|
eqeq12d |
⊢ ( 𝑥O = 𝑙 → ( ( 𝑥O +s 𝑦 ) = ( 𝑦 +s 𝑥O ) ↔ ( 𝑙 +s 𝑦 ) = ( 𝑦 +s 𝑙 ) ) ) |
21 |
20
|
rspccva |
⊢ ( ( ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥O +s 𝑦 ) = ( 𝑦 +s 𝑥O ) ∧ 𝑙 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ) → ( 𝑙 +s 𝑦 ) = ( 𝑦 +s 𝑙 ) ) |
22 |
16 17 21
|
syl2an |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥O +s 𝑦O ) = ( 𝑦O +s 𝑥O ) ∧ ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥O +s 𝑦 ) = ( 𝑦 +s 𝑥O ) ∧ ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦O ) = ( 𝑦O +s 𝑥 ) ) ) ∧ 𝑙 ∈ ( L ‘ 𝑥 ) ) → ( 𝑙 +s 𝑦 ) = ( 𝑦 +s 𝑙 ) ) |
23 |
22
|
eqeq2d |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥O +s 𝑦O ) = ( 𝑦O +s 𝑥O ) ∧ ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥O +s 𝑦 ) = ( 𝑦 +s 𝑥O ) ∧ ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦O ) = ( 𝑦O +s 𝑥 ) ) ) ∧ 𝑙 ∈ ( L ‘ 𝑥 ) ) → ( 𝑤 = ( 𝑙 +s 𝑦 ) ↔ 𝑤 = ( 𝑦 +s 𝑙 ) ) ) |
24 |
23
|
rexbidva |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥O +s 𝑦O ) = ( 𝑦O +s 𝑥O ) ∧ ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥O +s 𝑦 ) = ( 𝑦 +s 𝑥O ) ∧ ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦O ) = ( 𝑦O +s 𝑥 ) ) ) → ( ∃ 𝑙 ∈ ( L ‘ 𝑥 ) 𝑤 = ( 𝑙 +s 𝑦 ) ↔ ∃ 𝑙 ∈ ( L ‘ 𝑥 ) 𝑤 = ( 𝑦 +s 𝑙 ) ) ) |
25 |
24
|
abbidv |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥O +s 𝑦O ) = ( 𝑦O +s 𝑥O ) ∧ ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥O +s 𝑦 ) = ( 𝑦 +s 𝑥O ) ∧ ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦O ) = ( 𝑦O +s 𝑥 ) ) ) → { 𝑤 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑥 ) 𝑤 = ( 𝑙 +s 𝑦 ) } = { 𝑤 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑥 ) 𝑤 = ( 𝑦 +s 𝑙 ) } ) |
26 |
|
simpr3 |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥O +s 𝑦O ) = ( 𝑦O +s 𝑥O ) ∧ ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥O +s 𝑦 ) = ( 𝑦 +s 𝑥O ) ∧ ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦O ) = ( 𝑦O +s 𝑥 ) ) ) → ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦O ) = ( 𝑦O +s 𝑥 ) ) |
27 |
|
elun1 |
⊢ ( 𝑙 ∈ ( L ‘ 𝑦 ) → 𝑙 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ) |
28 |
|
oveq2 |
⊢ ( 𝑦O = 𝑙 → ( 𝑥 +s 𝑦O ) = ( 𝑥 +s 𝑙 ) ) |
29 |
|
oveq1 |
⊢ ( 𝑦O = 𝑙 → ( 𝑦O +s 𝑥 ) = ( 𝑙 +s 𝑥 ) ) |
30 |
28 29
|
eqeq12d |
⊢ ( 𝑦O = 𝑙 → ( ( 𝑥 +s 𝑦O ) = ( 𝑦O +s 𝑥 ) ↔ ( 𝑥 +s 𝑙 ) = ( 𝑙 +s 𝑥 ) ) ) |
31 |
30
|
rspccva |
⊢ ( ( ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦O ) = ( 𝑦O +s 𝑥 ) ∧ 𝑙 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ) → ( 𝑥 +s 𝑙 ) = ( 𝑙 +s 𝑥 ) ) |
32 |
26 27 31
|
syl2an |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥O +s 𝑦O ) = ( 𝑦O +s 𝑥O ) ∧ ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥O +s 𝑦 ) = ( 𝑦 +s 𝑥O ) ∧ ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦O ) = ( 𝑦O +s 𝑥 ) ) ) ∧ 𝑙 ∈ ( L ‘ 𝑦 ) ) → ( 𝑥 +s 𝑙 ) = ( 𝑙 +s 𝑥 ) ) |
33 |
32
|
eqeq2d |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥O +s 𝑦O ) = ( 𝑦O +s 𝑥O ) ∧ ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥O +s 𝑦 ) = ( 𝑦 +s 𝑥O ) ∧ ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦O ) = ( 𝑦O +s 𝑥 ) ) ) ∧ 𝑙 ∈ ( L ‘ 𝑦 ) ) → ( 𝑧 = ( 𝑥 +s 𝑙 ) ↔ 𝑧 = ( 𝑙 +s 𝑥 ) ) ) |
34 |
33
|
rexbidva |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥O +s 𝑦O ) = ( 𝑦O +s 𝑥O ) ∧ ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥O +s 𝑦 ) = ( 𝑦 +s 𝑥O ) ∧ ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦O ) = ( 𝑦O +s 𝑥 ) ) ) → ( ∃ 𝑙 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑙 ) ↔ ∃ 𝑙 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑙 +s 𝑥 ) ) ) |
35 |
34
|
abbidv |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥O +s 𝑦O ) = ( 𝑦O +s 𝑥O ) ∧ ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥O +s 𝑦 ) = ( 𝑦 +s 𝑥O ) ∧ ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦O ) = ( 𝑦O +s 𝑥 ) ) ) → { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑙 ) } = { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑙 +s 𝑥 ) } ) |
36 |
25 35
|
uneq12d |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥O +s 𝑦O ) = ( 𝑦O +s 𝑥O ) ∧ ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥O +s 𝑦 ) = ( 𝑦 +s 𝑥O ) ∧ ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦O ) = ( 𝑦O +s 𝑥 ) ) ) → ( { 𝑤 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑥 ) 𝑤 = ( 𝑙 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑙 ) } ) = ( { 𝑤 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑥 ) 𝑤 = ( 𝑦 +s 𝑙 ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑙 +s 𝑥 ) } ) ) |
37 |
|
uncom |
⊢ ( { 𝑤 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑥 ) 𝑤 = ( 𝑦 +s 𝑙 ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑙 +s 𝑥 ) } ) = ( { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑙 +s 𝑥 ) } ∪ { 𝑤 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑥 ) 𝑤 = ( 𝑦 +s 𝑙 ) } ) |
38 |
36 37
|
eqtrdi |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥O +s 𝑦O ) = ( 𝑦O +s 𝑥O ) ∧ ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥O +s 𝑦 ) = ( 𝑦 +s 𝑥O ) ∧ ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦O ) = ( 𝑦O +s 𝑥 ) ) ) → ( { 𝑤 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑥 ) 𝑤 = ( 𝑙 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑙 ) } ) = ( { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑙 +s 𝑥 ) } ∪ { 𝑤 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑥 ) 𝑤 = ( 𝑦 +s 𝑙 ) } ) ) |
39 |
|
elun2 |
⊢ ( 𝑟 ∈ ( R ‘ 𝑥 ) → 𝑟 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ) |
40 |
|
oveq1 |
⊢ ( 𝑥O = 𝑟 → ( 𝑥O +s 𝑦 ) = ( 𝑟 +s 𝑦 ) ) |
41 |
|
oveq2 |
⊢ ( 𝑥O = 𝑟 → ( 𝑦 +s 𝑥O ) = ( 𝑦 +s 𝑟 ) ) |
42 |
40 41
|
eqeq12d |
⊢ ( 𝑥O = 𝑟 → ( ( 𝑥O +s 𝑦 ) = ( 𝑦 +s 𝑥O ) ↔ ( 𝑟 +s 𝑦 ) = ( 𝑦 +s 𝑟 ) ) ) |
43 |
42
|
rspccva |
⊢ ( ( ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥O +s 𝑦 ) = ( 𝑦 +s 𝑥O ) ∧ 𝑟 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ) → ( 𝑟 +s 𝑦 ) = ( 𝑦 +s 𝑟 ) ) |
44 |
16 39 43
|
syl2an |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥O +s 𝑦O ) = ( 𝑦O +s 𝑥O ) ∧ ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥O +s 𝑦 ) = ( 𝑦 +s 𝑥O ) ∧ ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦O ) = ( 𝑦O +s 𝑥 ) ) ) ∧ 𝑟 ∈ ( R ‘ 𝑥 ) ) → ( 𝑟 +s 𝑦 ) = ( 𝑦 +s 𝑟 ) ) |
45 |
44
|
eqeq2d |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥O +s 𝑦O ) = ( 𝑦O +s 𝑥O ) ∧ ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥O +s 𝑦 ) = ( 𝑦 +s 𝑥O ) ∧ ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦O ) = ( 𝑦O +s 𝑥 ) ) ) ∧ 𝑟 ∈ ( R ‘ 𝑥 ) ) → ( 𝑤 = ( 𝑟 +s 𝑦 ) ↔ 𝑤 = ( 𝑦 +s 𝑟 ) ) ) |
46 |
45
|
rexbidva |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥O +s 𝑦O ) = ( 𝑦O +s 𝑥O ) ∧ ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥O +s 𝑦 ) = ( 𝑦 +s 𝑥O ) ∧ ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦O ) = ( 𝑦O +s 𝑥 ) ) ) → ( ∃ 𝑟 ∈ ( R ‘ 𝑥 ) 𝑤 = ( 𝑟 +s 𝑦 ) ↔ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) 𝑤 = ( 𝑦 +s 𝑟 ) ) ) |
47 |
46
|
abbidv |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥O +s 𝑦O ) = ( 𝑦O +s 𝑥O ) ∧ ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥O +s 𝑦 ) = ( 𝑦 +s 𝑥O ) ∧ ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦O ) = ( 𝑦O +s 𝑥 ) ) ) → { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) 𝑤 = ( 𝑟 +s 𝑦 ) } = { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) 𝑤 = ( 𝑦 +s 𝑟 ) } ) |
48 |
|
elun2 |
⊢ ( 𝑟 ∈ ( R ‘ 𝑦 ) → 𝑟 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ) |
49 |
|
oveq2 |
⊢ ( 𝑦O = 𝑟 → ( 𝑥 +s 𝑦O ) = ( 𝑥 +s 𝑟 ) ) |
50 |
|
oveq1 |
⊢ ( 𝑦O = 𝑟 → ( 𝑦O +s 𝑥 ) = ( 𝑟 +s 𝑥 ) ) |
51 |
49 50
|
eqeq12d |
⊢ ( 𝑦O = 𝑟 → ( ( 𝑥 +s 𝑦O ) = ( 𝑦O +s 𝑥 ) ↔ ( 𝑥 +s 𝑟 ) = ( 𝑟 +s 𝑥 ) ) ) |
52 |
51
|
rspccva |
⊢ ( ( ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦O ) = ( 𝑦O +s 𝑥 ) ∧ 𝑟 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ) → ( 𝑥 +s 𝑟 ) = ( 𝑟 +s 𝑥 ) ) |
53 |
26 48 52
|
syl2an |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥O +s 𝑦O ) = ( 𝑦O +s 𝑥O ) ∧ ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥O +s 𝑦 ) = ( 𝑦 +s 𝑥O ) ∧ ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦O ) = ( 𝑦O +s 𝑥 ) ) ) ∧ 𝑟 ∈ ( R ‘ 𝑦 ) ) → ( 𝑥 +s 𝑟 ) = ( 𝑟 +s 𝑥 ) ) |
54 |
53
|
eqeq2d |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥O +s 𝑦O ) = ( 𝑦O +s 𝑥O ) ∧ ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥O +s 𝑦 ) = ( 𝑦 +s 𝑥O ) ∧ ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦O ) = ( 𝑦O +s 𝑥 ) ) ) ∧ 𝑟 ∈ ( R ‘ 𝑦 ) ) → ( 𝑧 = ( 𝑥 +s 𝑟 ) ↔ 𝑧 = ( 𝑟 +s 𝑥 ) ) ) |
55 |
54
|
rexbidva |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥O +s 𝑦O ) = ( 𝑦O +s 𝑥O ) ∧ ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥O +s 𝑦 ) = ( 𝑦 +s 𝑥O ) ∧ ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦O ) = ( 𝑦O +s 𝑥 ) ) ) → ( ∃ 𝑟 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑟 ) ↔ ∃ 𝑟 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑟 +s 𝑥 ) ) ) |
56 |
55
|
abbidv |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥O +s 𝑦O ) = ( 𝑦O +s 𝑥O ) ∧ ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥O +s 𝑦 ) = ( 𝑦 +s 𝑥O ) ∧ ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦O ) = ( 𝑦O +s 𝑥 ) ) ) → { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑟 ) } = { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑟 +s 𝑥 ) } ) |
57 |
47 56
|
uneq12d |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥O +s 𝑦O ) = ( 𝑦O +s 𝑥O ) ∧ ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥O +s 𝑦 ) = ( 𝑦 +s 𝑥O ) ∧ ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦O ) = ( 𝑦O +s 𝑥 ) ) ) → ( { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) 𝑤 = ( 𝑟 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑟 ) } ) = ( { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) 𝑤 = ( 𝑦 +s 𝑟 ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑟 +s 𝑥 ) } ) ) |
58 |
|
uncom |
⊢ ( { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) 𝑤 = ( 𝑦 +s 𝑟 ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑟 +s 𝑥 ) } ) = ( { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑟 +s 𝑥 ) } ∪ { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) 𝑤 = ( 𝑦 +s 𝑟 ) } ) |
59 |
57 58
|
eqtrdi |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥O +s 𝑦O ) = ( 𝑦O +s 𝑥O ) ∧ ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥O +s 𝑦 ) = ( 𝑦 +s 𝑥O ) ∧ ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦O ) = ( 𝑦O +s 𝑥 ) ) ) → ( { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) 𝑤 = ( 𝑟 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑟 ) } ) = ( { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑟 +s 𝑥 ) } ∪ { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) 𝑤 = ( 𝑦 +s 𝑟 ) } ) ) |
60 |
38 59
|
oveq12d |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥O +s 𝑦O ) = ( 𝑦O +s 𝑥O ) ∧ ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥O +s 𝑦 ) = ( 𝑦 +s 𝑥O ) ∧ ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦O ) = ( 𝑦O +s 𝑥 ) ) ) → ( ( { 𝑤 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑥 ) 𝑤 = ( 𝑙 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑙 ) } ) |s ( { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) 𝑤 = ( 𝑟 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑟 ) } ) ) = ( ( { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑙 +s 𝑥 ) } ∪ { 𝑤 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑥 ) 𝑤 = ( 𝑦 +s 𝑙 ) } ) |s ( { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑟 +s 𝑥 ) } ∪ { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) 𝑤 = ( 𝑦 +s 𝑟 ) } ) ) ) |
61 |
|
addsval |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) → ( 𝑥 +s 𝑦 ) = ( ( { 𝑤 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑥 ) 𝑤 = ( 𝑙 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑙 ) } ) |s ( { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) 𝑤 = ( 𝑟 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑟 ) } ) ) ) |
62 |
61
|
adantr |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥O +s 𝑦O ) = ( 𝑦O +s 𝑥O ) ∧ ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥O +s 𝑦 ) = ( 𝑦 +s 𝑥O ) ∧ ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦O ) = ( 𝑦O +s 𝑥 ) ) ) → ( 𝑥 +s 𝑦 ) = ( ( { 𝑤 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑥 ) 𝑤 = ( 𝑙 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑙 ) } ) |s ( { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) 𝑤 = ( 𝑟 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑟 ) } ) ) ) |
63 |
|
addsval |
⊢ ( ( 𝑦 ∈ No ∧ 𝑥 ∈ No ) → ( 𝑦 +s 𝑥 ) = ( ( { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑙 +s 𝑥 ) } ∪ { 𝑤 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑥 ) 𝑤 = ( 𝑦 +s 𝑙 ) } ) |s ( { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑟 +s 𝑥 ) } ∪ { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) 𝑤 = ( 𝑦 +s 𝑟 ) } ) ) ) |
64 |
63
|
ancoms |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) → ( 𝑦 +s 𝑥 ) = ( ( { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑙 +s 𝑥 ) } ∪ { 𝑤 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑥 ) 𝑤 = ( 𝑦 +s 𝑙 ) } ) |s ( { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑟 +s 𝑥 ) } ∪ { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) 𝑤 = ( 𝑦 +s 𝑟 ) } ) ) ) |
65 |
64
|
adantr |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥O +s 𝑦O ) = ( 𝑦O +s 𝑥O ) ∧ ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥O +s 𝑦 ) = ( 𝑦 +s 𝑥O ) ∧ ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦O ) = ( 𝑦O +s 𝑥 ) ) ) → ( 𝑦 +s 𝑥 ) = ( ( { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑙 +s 𝑥 ) } ∪ { 𝑤 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑥 ) 𝑤 = ( 𝑦 +s 𝑙 ) } ) |s ( { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑟 +s 𝑥 ) } ∪ { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑥 ) 𝑤 = ( 𝑦 +s 𝑟 ) } ) ) ) |
66 |
60 62 65
|
3eqtr4d |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥O +s 𝑦O ) = ( 𝑦O +s 𝑥O ) ∧ ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥O +s 𝑦 ) = ( 𝑦 +s 𝑥O ) ∧ ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦O ) = ( 𝑦O +s 𝑥 ) ) ) → ( 𝑥 +s 𝑦 ) = ( 𝑦 +s 𝑥 ) ) |
67 |
66
|
ex |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) → ( ( ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥O +s 𝑦O ) = ( 𝑦O +s 𝑥O ) ∧ ∀ 𝑥O ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥O +s 𝑦 ) = ( 𝑦 +s 𝑥O ) ∧ ∀ 𝑦O ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( 𝑥 +s 𝑦O ) = ( 𝑦O +s 𝑥 ) ) → ( 𝑥 +s 𝑦 ) = ( 𝑦 +s 𝑥 ) ) ) |
68 |
3 6 9 12 15 67
|
no2inds |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 +s 𝐵 ) = ( 𝐵 +s 𝐴 ) ) |