| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq1 | ⊢ ( 𝑥  =  𝑥𝑂  →  ( 𝑥  +s  𝑦 )  =  ( 𝑥𝑂  +s  𝑦 ) ) | 
						
							| 2 |  | oveq2 | ⊢ ( 𝑥  =  𝑥𝑂  →  ( 𝑦  +s  𝑥 )  =  ( 𝑦  +s  𝑥𝑂 ) ) | 
						
							| 3 | 1 2 | eqeq12d | ⊢ ( 𝑥  =  𝑥𝑂  →  ( ( 𝑥  +s  𝑦 )  =  ( 𝑦  +s  𝑥 )  ↔  ( 𝑥𝑂  +s  𝑦 )  =  ( 𝑦  +s  𝑥𝑂 ) ) ) | 
						
							| 4 |  | oveq2 | ⊢ ( 𝑦  =  𝑦𝑂  →  ( 𝑥𝑂  +s  𝑦 )  =  ( 𝑥𝑂  +s  𝑦𝑂 ) ) | 
						
							| 5 |  | oveq1 | ⊢ ( 𝑦  =  𝑦𝑂  →  ( 𝑦  +s  𝑥𝑂 )  =  ( 𝑦𝑂  +s  𝑥𝑂 ) ) | 
						
							| 6 | 4 5 | eqeq12d | ⊢ ( 𝑦  =  𝑦𝑂  →  ( ( 𝑥𝑂  +s  𝑦 )  =  ( 𝑦  +s  𝑥𝑂 )  ↔  ( 𝑥𝑂  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥𝑂 ) ) ) | 
						
							| 7 |  | oveq1 | ⊢ ( 𝑥  =  𝑥𝑂  →  ( 𝑥  +s  𝑦𝑂 )  =  ( 𝑥𝑂  +s  𝑦𝑂 ) ) | 
						
							| 8 |  | oveq2 | ⊢ ( 𝑥  =  𝑥𝑂  →  ( 𝑦𝑂  +s  𝑥 )  =  ( 𝑦𝑂  +s  𝑥𝑂 ) ) | 
						
							| 9 | 7 8 | eqeq12d | ⊢ ( 𝑥  =  𝑥𝑂  →  ( ( 𝑥  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥 )  ↔  ( 𝑥𝑂  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥𝑂 ) ) ) | 
						
							| 10 |  | oveq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  +s  𝑦 )  =  ( 𝐴  +s  𝑦 ) ) | 
						
							| 11 |  | oveq2 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑦  +s  𝑥 )  =  ( 𝑦  +s  𝐴 ) ) | 
						
							| 12 | 10 11 | eqeq12d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑥  +s  𝑦 )  =  ( 𝑦  +s  𝑥 )  ↔  ( 𝐴  +s  𝑦 )  =  ( 𝑦  +s  𝐴 ) ) ) | 
						
							| 13 |  | oveq2 | ⊢ ( 𝑦  =  𝐵  →  ( 𝐴  +s  𝑦 )  =  ( 𝐴  +s  𝐵 ) ) | 
						
							| 14 |  | oveq1 | ⊢ ( 𝑦  =  𝐵  →  ( 𝑦  +s  𝐴 )  =  ( 𝐵  +s  𝐴 ) ) | 
						
							| 15 | 13 14 | eqeq12d | ⊢ ( 𝑦  =  𝐵  →  ( ( 𝐴  +s  𝑦 )  =  ( 𝑦  +s  𝐴 )  ↔  ( 𝐴  +s  𝐵 )  =  ( 𝐵  +s  𝐴 ) ) ) | 
						
							| 16 |  | simpr2 | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥𝑂  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  𝑦 )  =  ( 𝑦  +s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥 ) ) )  →  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  𝑦 )  =  ( 𝑦  +s  𝑥𝑂 ) ) | 
						
							| 17 |  | elun1 | ⊢ ( 𝑙  ∈  (  L  ‘ 𝑥 )  →  𝑙  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ) | 
						
							| 18 |  | oveq1 | ⊢ ( 𝑥𝑂  =  𝑙  →  ( 𝑥𝑂  +s  𝑦 )  =  ( 𝑙  +s  𝑦 ) ) | 
						
							| 19 |  | oveq2 | ⊢ ( 𝑥𝑂  =  𝑙  →  ( 𝑦  +s  𝑥𝑂 )  =  ( 𝑦  +s  𝑙 ) ) | 
						
							| 20 | 18 19 | eqeq12d | ⊢ ( 𝑥𝑂  =  𝑙  →  ( ( 𝑥𝑂  +s  𝑦 )  =  ( 𝑦  +s  𝑥𝑂 )  ↔  ( 𝑙  +s  𝑦 )  =  ( 𝑦  +s  𝑙 ) ) ) | 
						
							| 21 | 20 | rspccva | ⊢ ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  𝑦 )  =  ( 𝑦  +s  𝑥𝑂 )  ∧  𝑙  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) )  →  ( 𝑙  +s  𝑦 )  =  ( 𝑦  +s  𝑙 ) ) | 
						
							| 22 | 16 17 21 | syl2an | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥𝑂  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  𝑦 )  =  ( 𝑦  +s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥 ) ) )  ∧  𝑙  ∈  (  L  ‘ 𝑥 ) )  →  ( 𝑙  +s  𝑦 )  =  ( 𝑦  +s  𝑙 ) ) | 
						
							| 23 | 22 | eqeq2d | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥𝑂  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  𝑦 )  =  ( 𝑦  +s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥 ) ) )  ∧  𝑙  ∈  (  L  ‘ 𝑥 ) )  →  ( 𝑤  =  ( 𝑙  +s  𝑦 )  ↔  𝑤  =  ( 𝑦  +s  𝑙 ) ) ) | 
						
							| 24 | 23 | rexbidva | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥𝑂  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  𝑦 )  =  ( 𝑦  +s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥 ) ) )  →  ( ∃ 𝑙  ∈  (  L  ‘ 𝑥 ) 𝑤  =  ( 𝑙  +s  𝑦 )  ↔  ∃ 𝑙  ∈  (  L  ‘ 𝑥 ) 𝑤  =  ( 𝑦  +s  𝑙 ) ) ) | 
						
							| 25 | 24 | abbidv | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥𝑂  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  𝑦 )  =  ( 𝑦  +s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥 ) ) )  →  { 𝑤  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑥 ) 𝑤  =  ( 𝑙  +s  𝑦 ) }  =  { 𝑤  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑥 ) 𝑤  =  ( 𝑦  +s  𝑙 ) } ) | 
						
							| 26 |  | simpr3 | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥𝑂  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  𝑦 )  =  ( 𝑦  +s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥 ) ) )  →  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥 ) ) | 
						
							| 27 |  | elun1 | ⊢ ( 𝑙  ∈  (  L  ‘ 𝑦 )  →  𝑙  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ) | 
						
							| 28 |  | oveq2 | ⊢ ( 𝑦𝑂  =  𝑙  →  ( 𝑥  +s  𝑦𝑂 )  =  ( 𝑥  +s  𝑙 ) ) | 
						
							| 29 |  | oveq1 | ⊢ ( 𝑦𝑂  =  𝑙  →  ( 𝑦𝑂  +s  𝑥 )  =  ( 𝑙  +s  𝑥 ) ) | 
						
							| 30 | 28 29 | eqeq12d | ⊢ ( 𝑦𝑂  =  𝑙  →  ( ( 𝑥  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥 )  ↔  ( 𝑥  +s  𝑙 )  =  ( 𝑙  +s  𝑥 ) ) ) | 
						
							| 31 | 30 | rspccva | ⊢ ( ( ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥 )  ∧  𝑙  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) )  →  ( 𝑥  +s  𝑙 )  =  ( 𝑙  +s  𝑥 ) ) | 
						
							| 32 | 26 27 31 | syl2an | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥𝑂  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  𝑦 )  =  ( 𝑦  +s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥 ) ) )  ∧  𝑙  ∈  (  L  ‘ 𝑦 ) )  →  ( 𝑥  +s  𝑙 )  =  ( 𝑙  +s  𝑥 ) ) | 
						
							| 33 | 32 | eqeq2d | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥𝑂  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  𝑦 )  =  ( 𝑦  +s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥 ) ) )  ∧  𝑙  ∈  (  L  ‘ 𝑦 ) )  →  ( 𝑧  =  ( 𝑥  +s  𝑙 )  ↔  𝑧  =  ( 𝑙  +s  𝑥 ) ) ) | 
						
							| 34 | 33 | rexbidva | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥𝑂  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  𝑦 )  =  ( 𝑦  +s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥 ) ) )  →  ( ∃ 𝑙  ∈  (  L  ‘ 𝑦 ) 𝑧  =  ( 𝑥  +s  𝑙 )  ↔  ∃ 𝑙  ∈  (  L  ‘ 𝑦 ) 𝑧  =  ( 𝑙  +s  𝑥 ) ) ) | 
						
							| 35 | 34 | abbidv | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥𝑂  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  𝑦 )  =  ( 𝑦  +s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥 ) ) )  →  { 𝑧  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑦 ) 𝑧  =  ( 𝑥  +s  𝑙 ) }  =  { 𝑧  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑦 ) 𝑧  =  ( 𝑙  +s  𝑥 ) } ) | 
						
							| 36 | 25 35 | uneq12d | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥𝑂  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  𝑦 )  =  ( 𝑦  +s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥 ) ) )  →  ( { 𝑤  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑥 ) 𝑤  =  ( 𝑙  +s  𝑦 ) }  ∪  { 𝑧  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑦 ) 𝑧  =  ( 𝑥  +s  𝑙 ) } )  =  ( { 𝑤  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑥 ) 𝑤  =  ( 𝑦  +s  𝑙 ) }  ∪  { 𝑧  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑦 ) 𝑧  =  ( 𝑙  +s  𝑥 ) } ) ) | 
						
							| 37 |  | uncom | ⊢ ( { 𝑤  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑥 ) 𝑤  =  ( 𝑦  +s  𝑙 ) }  ∪  { 𝑧  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑦 ) 𝑧  =  ( 𝑙  +s  𝑥 ) } )  =  ( { 𝑧  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑦 ) 𝑧  =  ( 𝑙  +s  𝑥 ) }  ∪  { 𝑤  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑥 ) 𝑤  =  ( 𝑦  +s  𝑙 ) } ) | 
						
							| 38 | 36 37 | eqtrdi | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥𝑂  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  𝑦 )  =  ( 𝑦  +s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥 ) ) )  →  ( { 𝑤  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑥 ) 𝑤  =  ( 𝑙  +s  𝑦 ) }  ∪  { 𝑧  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑦 ) 𝑧  =  ( 𝑥  +s  𝑙 ) } )  =  ( { 𝑧  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑦 ) 𝑧  =  ( 𝑙  +s  𝑥 ) }  ∪  { 𝑤  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑥 ) 𝑤  =  ( 𝑦  +s  𝑙 ) } ) ) | 
						
							| 39 |  | elun2 | ⊢ ( 𝑟  ∈  (  R  ‘ 𝑥 )  →  𝑟  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ) | 
						
							| 40 |  | oveq1 | ⊢ ( 𝑥𝑂  =  𝑟  →  ( 𝑥𝑂  +s  𝑦 )  =  ( 𝑟  +s  𝑦 ) ) | 
						
							| 41 |  | oveq2 | ⊢ ( 𝑥𝑂  =  𝑟  →  ( 𝑦  +s  𝑥𝑂 )  =  ( 𝑦  +s  𝑟 ) ) | 
						
							| 42 | 40 41 | eqeq12d | ⊢ ( 𝑥𝑂  =  𝑟  →  ( ( 𝑥𝑂  +s  𝑦 )  =  ( 𝑦  +s  𝑥𝑂 )  ↔  ( 𝑟  +s  𝑦 )  =  ( 𝑦  +s  𝑟 ) ) ) | 
						
							| 43 | 42 | rspccva | ⊢ ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  𝑦 )  =  ( 𝑦  +s  𝑥𝑂 )  ∧  𝑟  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) )  →  ( 𝑟  +s  𝑦 )  =  ( 𝑦  +s  𝑟 ) ) | 
						
							| 44 | 16 39 43 | syl2an | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥𝑂  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  𝑦 )  =  ( 𝑦  +s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥 ) ) )  ∧  𝑟  ∈  (  R  ‘ 𝑥 ) )  →  ( 𝑟  +s  𝑦 )  =  ( 𝑦  +s  𝑟 ) ) | 
						
							| 45 | 44 | eqeq2d | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥𝑂  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  𝑦 )  =  ( 𝑦  +s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥 ) ) )  ∧  𝑟  ∈  (  R  ‘ 𝑥 ) )  →  ( 𝑤  =  ( 𝑟  +s  𝑦 )  ↔  𝑤  =  ( 𝑦  +s  𝑟 ) ) ) | 
						
							| 46 | 45 | rexbidva | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥𝑂  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  𝑦 )  =  ( 𝑦  +s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥 ) ) )  →  ( ∃ 𝑟  ∈  (  R  ‘ 𝑥 ) 𝑤  =  ( 𝑟  +s  𝑦 )  ↔  ∃ 𝑟  ∈  (  R  ‘ 𝑥 ) 𝑤  =  ( 𝑦  +s  𝑟 ) ) ) | 
						
							| 47 | 46 | abbidv | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥𝑂  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  𝑦 )  =  ( 𝑦  +s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥 ) ) )  →  { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑥 ) 𝑤  =  ( 𝑟  +s  𝑦 ) }  =  { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑥 ) 𝑤  =  ( 𝑦  +s  𝑟 ) } ) | 
						
							| 48 |  | elun2 | ⊢ ( 𝑟  ∈  (  R  ‘ 𝑦 )  →  𝑟  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ) | 
						
							| 49 |  | oveq2 | ⊢ ( 𝑦𝑂  =  𝑟  →  ( 𝑥  +s  𝑦𝑂 )  =  ( 𝑥  +s  𝑟 ) ) | 
						
							| 50 |  | oveq1 | ⊢ ( 𝑦𝑂  =  𝑟  →  ( 𝑦𝑂  +s  𝑥 )  =  ( 𝑟  +s  𝑥 ) ) | 
						
							| 51 | 49 50 | eqeq12d | ⊢ ( 𝑦𝑂  =  𝑟  →  ( ( 𝑥  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥 )  ↔  ( 𝑥  +s  𝑟 )  =  ( 𝑟  +s  𝑥 ) ) ) | 
						
							| 52 | 51 | rspccva | ⊢ ( ( ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥 )  ∧  𝑟  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) )  →  ( 𝑥  +s  𝑟 )  =  ( 𝑟  +s  𝑥 ) ) | 
						
							| 53 | 26 48 52 | syl2an | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥𝑂  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  𝑦 )  =  ( 𝑦  +s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥 ) ) )  ∧  𝑟  ∈  (  R  ‘ 𝑦 ) )  →  ( 𝑥  +s  𝑟 )  =  ( 𝑟  +s  𝑥 ) ) | 
						
							| 54 | 53 | eqeq2d | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥𝑂  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  𝑦 )  =  ( 𝑦  +s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥 ) ) )  ∧  𝑟  ∈  (  R  ‘ 𝑦 ) )  →  ( 𝑧  =  ( 𝑥  +s  𝑟 )  ↔  𝑧  =  ( 𝑟  +s  𝑥 ) ) ) | 
						
							| 55 | 54 | rexbidva | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥𝑂  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  𝑦 )  =  ( 𝑦  +s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥 ) ) )  →  ( ∃ 𝑟  ∈  (  R  ‘ 𝑦 ) 𝑧  =  ( 𝑥  +s  𝑟 )  ↔  ∃ 𝑟  ∈  (  R  ‘ 𝑦 ) 𝑧  =  ( 𝑟  +s  𝑥 ) ) ) | 
						
							| 56 | 55 | abbidv | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥𝑂  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  𝑦 )  =  ( 𝑦  +s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥 ) ) )  →  { 𝑧  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑦 ) 𝑧  =  ( 𝑥  +s  𝑟 ) }  =  { 𝑧  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑦 ) 𝑧  =  ( 𝑟  +s  𝑥 ) } ) | 
						
							| 57 | 47 56 | uneq12d | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥𝑂  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  𝑦 )  =  ( 𝑦  +s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥 ) ) )  →  ( { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑥 ) 𝑤  =  ( 𝑟  +s  𝑦 ) }  ∪  { 𝑧  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑦 ) 𝑧  =  ( 𝑥  +s  𝑟 ) } )  =  ( { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑥 ) 𝑤  =  ( 𝑦  +s  𝑟 ) }  ∪  { 𝑧  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑦 ) 𝑧  =  ( 𝑟  +s  𝑥 ) } ) ) | 
						
							| 58 |  | uncom | ⊢ ( { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑥 ) 𝑤  =  ( 𝑦  +s  𝑟 ) }  ∪  { 𝑧  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑦 ) 𝑧  =  ( 𝑟  +s  𝑥 ) } )  =  ( { 𝑧  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑦 ) 𝑧  =  ( 𝑟  +s  𝑥 ) }  ∪  { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑥 ) 𝑤  =  ( 𝑦  +s  𝑟 ) } ) | 
						
							| 59 | 57 58 | eqtrdi | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥𝑂  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  𝑦 )  =  ( 𝑦  +s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥 ) ) )  →  ( { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑥 ) 𝑤  =  ( 𝑟  +s  𝑦 ) }  ∪  { 𝑧  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑦 ) 𝑧  =  ( 𝑥  +s  𝑟 ) } )  =  ( { 𝑧  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑦 ) 𝑧  =  ( 𝑟  +s  𝑥 ) }  ∪  { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑥 ) 𝑤  =  ( 𝑦  +s  𝑟 ) } ) ) | 
						
							| 60 | 38 59 | oveq12d | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥𝑂  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  𝑦 )  =  ( 𝑦  +s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥 ) ) )  →  ( ( { 𝑤  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑥 ) 𝑤  =  ( 𝑙  +s  𝑦 ) }  ∪  { 𝑧  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑦 ) 𝑧  =  ( 𝑥  +s  𝑙 ) } )  |s  ( { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑥 ) 𝑤  =  ( 𝑟  +s  𝑦 ) }  ∪  { 𝑧  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑦 ) 𝑧  =  ( 𝑥  +s  𝑟 ) } ) )  =  ( ( { 𝑧  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑦 ) 𝑧  =  ( 𝑙  +s  𝑥 ) }  ∪  { 𝑤  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑥 ) 𝑤  =  ( 𝑦  +s  𝑙 ) } )  |s  ( { 𝑧  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑦 ) 𝑧  =  ( 𝑟  +s  𝑥 ) }  ∪  { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑥 ) 𝑤  =  ( 𝑦  +s  𝑟 ) } ) ) ) | 
						
							| 61 |  | addsval | ⊢ ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  →  ( 𝑥  +s  𝑦 )  =  ( ( { 𝑤  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑥 ) 𝑤  =  ( 𝑙  +s  𝑦 ) }  ∪  { 𝑧  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑦 ) 𝑧  =  ( 𝑥  +s  𝑙 ) } )  |s  ( { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑥 ) 𝑤  =  ( 𝑟  +s  𝑦 ) }  ∪  { 𝑧  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑦 ) 𝑧  =  ( 𝑥  +s  𝑟 ) } ) ) ) | 
						
							| 62 | 61 | adantr | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥𝑂  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  𝑦 )  =  ( 𝑦  +s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥 ) ) )  →  ( 𝑥  +s  𝑦 )  =  ( ( { 𝑤  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑥 ) 𝑤  =  ( 𝑙  +s  𝑦 ) }  ∪  { 𝑧  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑦 ) 𝑧  =  ( 𝑥  +s  𝑙 ) } )  |s  ( { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑥 ) 𝑤  =  ( 𝑟  +s  𝑦 ) }  ∪  { 𝑧  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑦 ) 𝑧  =  ( 𝑥  +s  𝑟 ) } ) ) ) | 
						
							| 63 |  | addsval | ⊢ ( ( 𝑦  ∈   No   ∧  𝑥  ∈   No  )  →  ( 𝑦  +s  𝑥 )  =  ( ( { 𝑧  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑦 ) 𝑧  =  ( 𝑙  +s  𝑥 ) }  ∪  { 𝑤  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑥 ) 𝑤  =  ( 𝑦  +s  𝑙 ) } )  |s  ( { 𝑧  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑦 ) 𝑧  =  ( 𝑟  +s  𝑥 ) }  ∪  { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑥 ) 𝑤  =  ( 𝑦  +s  𝑟 ) } ) ) ) | 
						
							| 64 | 63 | ancoms | ⊢ ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  →  ( 𝑦  +s  𝑥 )  =  ( ( { 𝑧  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑦 ) 𝑧  =  ( 𝑙  +s  𝑥 ) }  ∪  { 𝑤  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑥 ) 𝑤  =  ( 𝑦  +s  𝑙 ) } )  |s  ( { 𝑧  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑦 ) 𝑧  =  ( 𝑟  +s  𝑥 ) }  ∪  { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑥 ) 𝑤  =  ( 𝑦  +s  𝑟 ) } ) ) ) | 
						
							| 65 | 64 | adantr | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥𝑂  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  𝑦 )  =  ( 𝑦  +s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥 ) ) )  →  ( 𝑦  +s  𝑥 )  =  ( ( { 𝑧  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑦 ) 𝑧  =  ( 𝑙  +s  𝑥 ) }  ∪  { 𝑤  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑥 ) 𝑤  =  ( 𝑦  +s  𝑙 ) } )  |s  ( { 𝑧  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑦 ) 𝑧  =  ( 𝑟  +s  𝑥 ) }  ∪  { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑥 ) 𝑤  =  ( 𝑦  +s  𝑟 ) } ) ) ) | 
						
							| 66 | 60 62 65 | 3eqtr4d | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥𝑂  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  𝑦 )  =  ( 𝑦  +s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥 ) ) )  →  ( 𝑥  +s  𝑦 )  =  ( 𝑦  +s  𝑥 ) ) | 
						
							| 67 | 66 | ex | ⊢ ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  →  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥𝑂  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥𝑂 )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  𝑦 )  =  ( 𝑦  +s  𝑥𝑂 )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( 𝑥  +s  𝑦𝑂 )  =  ( 𝑦𝑂  +s  𝑥 ) )  →  ( 𝑥  +s  𝑦 )  =  ( 𝑦  +s  𝑥 ) ) ) | 
						
							| 68 | 3 6 9 12 15 67 | no2inds | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 𝐴  +s  𝐵 )  =  ( 𝐵  +s  𝐴 ) ) |