Metamath Proof Explorer


Theorem no2inds

Description: Double induction on surreals. The many substitution instances are to cover all possible cases. (Contributed by Scott Fenton, 22-Aug-2024)

Ref Expression
Hypotheses no2inds.1 ( 𝑥 = 𝑧 → ( 𝜑𝜓 ) )
no2inds.2 ( 𝑦 = 𝑤 → ( 𝜓𝜒 ) )
no2inds.3 ( 𝑥 = 𝑧 → ( 𝜃𝜒 ) )
no2inds.4 ( 𝑥 = 𝐴 → ( 𝜑𝜏 ) )
no2inds.5 ( 𝑦 = 𝐵 → ( 𝜏𝜂 ) )
no2inds.i ( ( 𝑥 No 𝑦 No ) → ( ( ∀ 𝑧 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑤 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) 𝜒 ∧ ∀ 𝑧 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) 𝜓 ∧ ∀ 𝑤 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) 𝜃 ) → 𝜑 ) )
Assertion no2inds ( ( 𝐴 No 𝐵 No ) → 𝜂 )

Proof

Step Hyp Ref Expression
1 no2inds.1 ( 𝑥 = 𝑧 → ( 𝜑𝜓 ) )
2 no2inds.2 ( 𝑦 = 𝑤 → ( 𝜓𝜒 ) )
3 no2inds.3 ( 𝑥 = 𝑧 → ( 𝜃𝜒 ) )
4 no2inds.4 ( 𝑥 = 𝐴 → ( 𝜑𝜏 ) )
5 no2inds.5 ( 𝑦 = 𝐵 → ( 𝜏𝜂 ) )
6 no2inds.i ( ( 𝑥 No 𝑦 No ) → ( ( ∀ 𝑧 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑤 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) 𝜒 ∧ ∀ 𝑧 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) 𝜓 ∧ ∀ 𝑤 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) 𝜃 ) → 𝜑 ) )
7 eqid { ⟨ 𝑎 , 𝑏 ⟩ ∣ 𝑎 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) } = { ⟨ 𝑎 , 𝑏 ⟩ ∣ 𝑎 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) }
8 eqid { ⟨ 𝑐 , 𝑑 ⟩ ∣ ( 𝑐 ∈ ( No × No ) ∧ 𝑑 ∈ ( No × No ) ∧ ( ( ( 1st𝑐 ) { ⟨ 𝑎 , 𝑏 ⟩ ∣ 𝑎 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) } ( 1st𝑑 ) ∨ ( 1st𝑐 ) = ( 1st𝑑 ) ) ∧ ( ( 2nd𝑐 ) { ⟨ 𝑎 , 𝑏 ⟩ ∣ 𝑎 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) } ( 2nd𝑑 ) ∨ ( 2nd𝑐 ) = ( 2nd𝑑 ) ) ∧ 𝑐𝑑 ) ) } = { ⟨ 𝑐 , 𝑑 ⟩ ∣ ( 𝑐 ∈ ( No × No ) ∧ 𝑑 ∈ ( No × No ) ∧ ( ( ( 1st𝑐 ) { ⟨ 𝑎 , 𝑏 ⟩ ∣ 𝑎 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) } ( 1st𝑑 ) ∨ ( 1st𝑐 ) = ( 1st𝑑 ) ) ∧ ( ( 2nd𝑐 ) { ⟨ 𝑎 , 𝑏 ⟩ ∣ 𝑎 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) } ( 2nd𝑑 ) ∨ ( 2nd𝑐 ) = ( 2nd𝑑 ) ) ∧ 𝑐𝑑 ) ) }
9 7 8 1 2 3 4 5 6 no2indslem ( ( 𝐴 No 𝐵 No ) → 𝜂 )