Metamath Proof Explorer


Theorem no2indslem

Description: Double induction on surreals with explicit notation for the relationships. (Contributed by Scott Fenton, 22-Aug-2024)

Ref Expression
Hypotheses no2indslem.a 𝑅 = { ⟨ 𝑎 , 𝑏 ⟩ ∣ 𝑎 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) }
no2indslem.b 𝑆 = { ⟨ 𝑐 , 𝑑 ⟩ ∣ ( 𝑐 ∈ ( No × No ) ∧ 𝑑 ∈ ( No × No ) ∧ ( ( ( 1st𝑐 ) 𝑅 ( 1st𝑑 ) ∨ ( 1st𝑐 ) = ( 1st𝑑 ) ) ∧ ( ( 2nd𝑐 ) 𝑅 ( 2nd𝑑 ) ∨ ( 2nd𝑐 ) = ( 2nd𝑑 ) ) ∧ 𝑐𝑑 ) ) }
no2indslem.1 ( 𝑥 = 𝑧 → ( 𝜑𝜓 ) )
no2indslem.2 ( 𝑦 = 𝑤 → ( 𝜓𝜒 ) )
no2indslem.3 ( 𝑥 = 𝑧 → ( 𝜃𝜒 ) )
no2indslem.4 ( 𝑥 = 𝐴 → ( 𝜑𝜏 ) )
no2indslem.5 ( 𝑦 = 𝐵 → ( 𝜏𝜂 ) )
no2indslem.i ( ( 𝑥 No 𝑦 No ) → ( ( ∀ 𝑧 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑤 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) 𝜒 ∧ ∀ 𝑧 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) 𝜓 ∧ ∀ 𝑤 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) 𝜃 ) → 𝜑 ) )
Assertion no2indslem ( ( 𝐴 No 𝐵 No ) → 𝜂 )

Proof

Step Hyp Ref Expression
1 no2indslem.a 𝑅 = { ⟨ 𝑎 , 𝑏 ⟩ ∣ 𝑎 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) }
2 no2indslem.b 𝑆 = { ⟨ 𝑐 , 𝑑 ⟩ ∣ ( 𝑐 ∈ ( No × No ) ∧ 𝑑 ∈ ( No × No ) ∧ ( ( ( 1st𝑐 ) 𝑅 ( 1st𝑑 ) ∨ ( 1st𝑐 ) = ( 1st𝑑 ) ) ∧ ( ( 2nd𝑐 ) 𝑅 ( 2nd𝑑 ) ∨ ( 2nd𝑐 ) = ( 2nd𝑑 ) ) ∧ 𝑐𝑑 ) ) }
3 no2indslem.1 ( 𝑥 = 𝑧 → ( 𝜑𝜓 ) )
4 no2indslem.2 ( 𝑦 = 𝑤 → ( 𝜓𝜒 ) )
5 no2indslem.3 ( 𝑥 = 𝑧 → ( 𝜃𝜒 ) )
6 no2indslem.4 ( 𝑥 = 𝐴 → ( 𝜑𝜏 ) )
7 no2indslem.5 ( 𝑦 = 𝐵 → ( 𝜏𝜂 ) )
8 no2indslem.i ( ( 𝑥 No 𝑦 No ) → ( ( ∀ 𝑧 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑤 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) 𝜒 ∧ ∀ 𝑧 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) 𝜓 ∧ ∀ 𝑤 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) 𝜃 ) → 𝜑 ) )
9 1 lrrecfr 𝑅 Fr No
10 1 lrrecpo 𝑅 Po No
11 1 lrrecse 𝑅 Se No
12 1 lrrecpred ( 𝑥 No → Pred ( 𝑅 , No , 𝑥 ) = ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) )
13 12 adantr ( ( 𝑥 No 𝑦 No ) → Pred ( 𝑅 , No , 𝑥 ) = ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) )
14 1 lrrecpred ( 𝑦 No → Pred ( 𝑅 , No , 𝑦 ) = ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) )
15 14 adantl ( ( 𝑥 No 𝑦 No ) → Pred ( 𝑅 , No , 𝑦 ) = ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) )
16 15 raleqdv ( ( 𝑥 No 𝑦 No ) → ( ∀ 𝑤 ∈ Pred ( 𝑅 , No , 𝑦 ) 𝜒 ↔ ∀ 𝑤 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) 𝜒 ) )
17 13 16 raleqbidv ( ( 𝑥 No 𝑦 No ) → ( ∀ 𝑧 ∈ Pred ( 𝑅 , No , 𝑥 ) ∀ 𝑤 ∈ Pred ( 𝑅 , No , 𝑦 ) 𝜒 ↔ ∀ 𝑧 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑤 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) 𝜒 ) )
18 13 raleqdv ( ( 𝑥 No 𝑦 No ) → ( ∀ 𝑧 ∈ Pred ( 𝑅 , No , 𝑥 ) 𝜓 ↔ ∀ 𝑧 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) 𝜓 ) )
19 15 raleqdv ( ( 𝑥 No 𝑦 No ) → ( ∀ 𝑤 ∈ Pred ( 𝑅 , No , 𝑦 ) 𝜃 ↔ ∀ 𝑤 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) 𝜃 ) )
20 17 18 19 3anbi123d ( ( 𝑥 No 𝑦 No ) → ( ( ∀ 𝑧 ∈ Pred ( 𝑅 , No , 𝑥 ) ∀ 𝑤 ∈ Pred ( 𝑅 , No , 𝑦 ) 𝜒 ∧ ∀ 𝑧 ∈ Pred ( 𝑅 , No , 𝑥 ) 𝜓 ∧ ∀ 𝑤 ∈ Pred ( 𝑅 , No , 𝑦 ) 𝜃 ) ↔ ( ∀ 𝑧 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑤 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) 𝜒 ∧ ∀ 𝑧 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) 𝜓 ∧ ∀ 𝑤 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) 𝜃 ) ) )
21 20 8 sylbid ( ( 𝑥 No 𝑦 No ) → ( ( ∀ 𝑧 ∈ Pred ( 𝑅 , No , 𝑥 ) ∀ 𝑤 ∈ Pred ( 𝑅 , No , 𝑦 ) 𝜒 ∧ ∀ 𝑧 ∈ Pred ( 𝑅 , No , 𝑥 ) 𝜓 ∧ ∀ 𝑤 ∈ Pred ( 𝑅 , No , 𝑦 ) 𝜃 ) → 𝜑 ) )
22 2 9 10 11 9 10 11 3 4 5 6 7 21 xpord2ind ( ( 𝐴 No 𝐵 No ) → 𝜂 )