Step |
Hyp |
Ref |
Expression |
1 |
|
no2indslem.a |
⊢ 𝑅 = { 〈 𝑎 , 𝑏 〉 ∣ 𝑎 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) } |
2 |
|
no2indslem.b |
⊢ 𝑆 = { 〈 𝑐 , 𝑑 〉 ∣ ( 𝑐 ∈ ( No × No ) ∧ 𝑑 ∈ ( No × No ) ∧ ( ( ( 1st ‘ 𝑐 ) 𝑅 ( 1st ‘ 𝑑 ) ∨ ( 1st ‘ 𝑐 ) = ( 1st ‘ 𝑑 ) ) ∧ ( ( 2nd ‘ 𝑐 ) 𝑅 ( 2nd ‘ 𝑑 ) ∨ ( 2nd ‘ 𝑐 ) = ( 2nd ‘ 𝑑 ) ) ∧ 𝑐 ≠ 𝑑 ) ) } |
3 |
|
no2indslem.1 |
⊢ ( 𝑥 = 𝑧 → ( 𝜑 ↔ 𝜓 ) ) |
4 |
|
no2indslem.2 |
⊢ ( 𝑦 = 𝑤 → ( 𝜓 ↔ 𝜒 ) ) |
5 |
|
no2indslem.3 |
⊢ ( 𝑥 = 𝑧 → ( 𝜃 ↔ 𝜒 ) ) |
6 |
|
no2indslem.4 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜏 ) ) |
7 |
|
no2indslem.5 |
⊢ ( 𝑦 = 𝐵 → ( 𝜏 ↔ 𝜂 ) ) |
8 |
|
no2indslem.i |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) → ( ( ∀ 𝑧 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑤 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) 𝜒 ∧ ∀ 𝑧 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) 𝜓 ∧ ∀ 𝑤 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) 𝜃 ) → 𝜑 ) ) |
9 |
1
|
lrrecfr |
⊢ 𝑅 Fr No |
10 |
1
|
lrrecpo |
⊢ 𝑅 Po No |
11 |
1
|
lrrecse |
⊢ 𝑅 Se No |
12 |
1
|
lrrecpred |
⊢ ( 𝑥 ∈ No → Pred ( 𝑅 , No , 𝑥 ) = ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ) |
13 |
12
|
adantr |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) → Pred ( 𝑅 , No , 𝑥 ) = ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ) |
14 |
1
|
lrrecpred |
⊢ ( 𝑦 ∈ No → Pred ( 𝑅 , No , 𝑦 ) = ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ) |
15 |
14
|
adantl |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) → Pred ( 𝑅 , No , 𝑦 ) = ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ) |
16 |
15
|
raleqdv |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) → ( ∀ 𝑤 ∈ Pred ( 𝑅 , No , 𝑦 ) 𝜒 ↔ ∀ 𝑤 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) 𝜒 ) ) |
17 |
13 16
|
raleqbidv |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) → ( ∀ 𝑧 ∈ Pred ( 𝑅 , No , 𝑥 ) ∀ 𝑤 ∈ Pred ( 𝑅 , No , 𝑦 ) 𝜒 ↔ ∀ 𝑧 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑤 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) 𝜒 ) ) |
18 |
13
|
raleqdv |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) → ( ∀ 𝑧 ∈ Pred ( 𝑅 , No , 𝑥 ) 𝜓 ↔ ∀ 𝑧 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) 𝜓 ) ) |
19 |
15
|
raleqdv |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) → ( ∀ 𝑤 ∈ Pred ( 𝑅 , No , 𝑦 ) 𝜃 ↔ ∀ 𝑤 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) 𝜃 ) ) |
20 |
17 18 19
|
3anbi123d |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) → ( ( ∀ 𝑧 ∈ Pred ( 𝑅 , No , 𝑥 ) ∀ 𝑤 ∈ Pred ( 𝑅 , No , 𝑦 ) 𝜒 ∧ ∀ 𝑧 ∈ Pred ( 𝑅 , No , 𝑥 ) 𝜓 ∧ ∀ 𝑤 ∈ Pred ( 𝑅 , No , 𝑦 ) 𝜃 ) ↔ ( ∀ 𝑧 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑤 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) 𝜒 ∧ ∀ 𝑧 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) 𝜓 ∧ ∀ 𝑤 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) 𝜃 ) ) ) |
21 |
20 8
|
sylbid |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) → ( ( ∀ 𝑧 ∈ Pred ( 𝑅 , No , 𝑥 ) ∀ 𝑤 ∈ Pred ( 𝑅 , No , 𝑦 ) 𝜒 ∧ ∀ 𝑧 ∈ Pred ( 𝑅 , No , 𝑥 ) 𝜓 ∧ ∀ 𝑤 ∈ Pred ( 𝑅 , No , 𝑦 ) 𝜃 ) → 𝜑 ) ) |
22 |
2 9 10 11 9 10 11 3 4 5 6 7 21
|
xpord2ind |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝜂 ) |