| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lrrec.1 | ⊢ 𝑅  =  { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } | 
						
							| 2 |  | df-se | ⊢ ( 𝑅  Se   No   ↔  ∀ 𝑎  ∈   No  { 𝑏  ∈   No   ∣  𝑏 𝑅 𝑎 }  ∈  V ) | 
						
							| 3 | 1 | lrrecval | ⊢ ( ( 𝑏  ∈   No   ∧  𝑎  ∈   No  )  →  ( 𝑏 𝑅 𝑎  ↔  𝑏  ∈  ( (  L  ‘ 𝑎 )  ∪  (  R  ‘ 𝑎 ) ) ) ) | 
						
							| 4 | 3 | ancoms | ⊢ ( ( 𝑎  ∈   No   ∧  𝑏  ∈   No  )  →  ( 𝑏 𝑅 𝑎  ↔  𝑏  ∈  ( (  L  ‘ 𝑎 )  ∪  (  R  ‘ 𝑎 ) ) ) ) | 
						
							| 5 | 4 | rabbidva | ⊢ ( 𝑎  ∈   No   →  { 𝑏  ∈   No   ∣  𝑏 𝑅 𝑎 }  =  { 𝑏  ∈   No   ∣  𝑏  ∈  ( (  L  ‘ 𝑎 )  ∪  (  R  ‘ 𝑎 ) ) } ) | 
						
							| 6 |  | dfrab2 | ⊢ { 𝑏  ∈   No   ∣  𝑏  ∈  ( (  L  ‘ 𝑎 )  ∪  (  R  ‘ 𝑎 ) ) }  =  ( { 𝑏  ∣  𝑏  ∈  ( (  L  ‘ 𝑎 )  ∪  (  R  ‘ 𝑎 ) ) }  ∩   No  ) | 
						
							| 7 |  | abid2 | ⊢ { 𝑏  ∣  𝑏  ∈  ( (  L  ‘ 𝑎 )  ∪  (  R  ‘ 𝑎 ) ) }  =  ( (  L  ‘ 𝑎 )  ∪  (  R  ‘ 𝑎 ) ) | 
						
							| 8 | 7 | ineq1i | ⊢ ( { 𝑏  ∣  𝑏  ∈  ( (  L  ‘ 𝑎 )  ∪  (  R  ‘ 𝑎 ) ) }  ∩   No  )  =  ( ( (  L  ‘ 𝑎 )  ∪  (  R  ‘ 𝑎 ) )  ∩   No  ) | 
						
							| 9 | 6 8 | eqtri | ⊢ { 𝑏  ∈   No   ∣  𝑏  ∈  ( (  L  ‘ 𝑎 )  ∪  (  R  ‘ 𝑎 ) ) }  =  ( ( (  L  ‘ 𝑎 )  ∪  (  R  ‘ 𝑎 ) )  ∩   No  ) | 
						
							| 10 |  | fvex | ⊢ (  L  ‘ 𝑎 )  ∈  V | 
						
							| 11 |  | fvex | ⊢ (  R  ‘ 𝑎 )  ∈  V | 
						
							| 12 | 10 11 | unex | ⊢ ( (  L  ‘ 𝑎 )  ∪  (  R  ‘ 𝑎 ) )  ∈  V | 
						
							| 13 | 12 | inex1 | ⊢ ( ( (  L  ‘ 𝑎 )  ∪  (  R  ‘ 𝑎 ) )  ∩   No  )  ∈  V | 
						
							| 14 | 9 13 | eqeltri | ⊢ { 𝑏  ∈   No   ∣  𝑏  ∈  ( (  L  ‘ 𝑎 )  ∪  (  R  ‘ 𝑎 ) ) }  ∈  V | 
						
							| 15 | 5 14 | eqeltrdi | ⊢ ( 𝑎  ∈   No   →  { 𝑏  ∈   No   ∣  𝑏 𝑅 𝑎 }  ∈  V ) | 
						
							| 16 | 2 15 | mprgbir | ⊢ 𝑅  Se   No |