Metamath Proof Explorer


Theorem lrrecse

Description: Next, we show that R is set-like over No . (Contributed by Scott Fenton, 19-Aug-2024)

Ref Expression
Hypothesis lrrec.1 No typesetting found for |- R = { <. x , y >. | x e. ( ( _Left ` y ) u. ( _Right ` y ) ) } with typecode |-
Assertion lrrecse RSeNo

Proof

Step Hyp Ref Expression
1 lrrec.1 Could not format R = { <. x , y >. | x e. ( ( _Left ` y ) u. ( _Right ` y ) ) } : No typesetting found for |- R = { <. x , y >. | x e. ( ( _Left ` y ) u. ( _Right ` y ) ) } with typecode |-
2 df-se RSeNoaNobNo|bRaV
3 1 lrrecval Could not format ( ( b e. No /\ a e. No ) -> ( b R a <-> b e. ( ( _Left ` a ) u. ( _Right ` a ) ) ) ) : No typesetting found for |- ( ( b e. No /\ a e. No ) -> ( b R a <-> b e. ( ( _Left ` a ) u. ( _Right ` a ) ) ) ) with typecode |-
4 3 ancoms Could not format ( ( a e. No /\ b e. No ) -> ( b R a <-> b e. ( ( _Left ` a ) u. ( _Right ` a ) ) ) ) : No typesetting found for |- ( ( a e. No /\ b e. No ) -> ( b R a <-> b e. ( ( _Left ` a ) u. ( _Right ` a ) ) ) ) with typecode |-
5 4 rabbidva Could not format ( a e. No -> { b e. No | b R a } = { b e. No | b e. ( ( _Left ` a ) u. ( _Right ` a ) ) } ) : No typesetting found for |- ( a e. No -> { b e. No | b R a } = { b e. No | b e. ( ( _Left ` a ) u. ( _Right ` a ) ) } ) with typecode |-
6 dfrab2 Could not format { b e. No | b e. ( ( _Left ` a ) u. ( _Right ` a ) ) } = ( { b | b e. ( ( _Left ` a ) u. ( _Right ` a ) ) } i^i No ) : No typesetting found for |- { b e. No | b e. ( ( _Left ` a ) u. ( _Right ` a ) ) } = ( { b | b e. ( ( _Left ` a ) u. ( _Right ` a ) ) } i^i No ) with typecode |-
7 abid2 Could not format { b | b e. ( ( _Left ` a ) u. ( _Right ` a ) ) } = ( ( _Left ` a ) u. ( _Right ` a ) ) : No typesetting found for |- { b | b e. ( ( _Left ` a ) u. ( _Right ` a ) ) } = ( ( _Left ` a ) u. ( _Right ` a ) ) with typecode |-
8 7 ineq1i Could not format ( { b | b e. ( ( _Left ` a ) u. ( _Right ` a ) ) } i^i No ) = ( ( ( _Left ` a ) u. ( _Right ` a ) ) i^i No ) : No typesetting found for |- ( { b | b e. ( ( _Left ` a ) u. ( _Right ` a ) ) } i^i No ) = ( ( ( _Left ` a ) u. ( _Right ` a ) ) i^i No ) with typecode |-
9 6 8 eqtri Could not format { b e. No | b e. ( ( _Left ` a ) u. ( _Right ` a ) ) } = ( ( ( _Left ` a ) u. ( _Right ` a ) ) i^i No ) : No typesetting found for |- { b e. No | b e. ( ( _Left ` a ) u. ( _Right ` a ) ) } = ( ( ( _Left ` a ) u. ( _Right ` a ) ) i^i No ) with typecode |-
10 fvex Could not format ( _Left ` a ) e. _V : No typesetting found for |- ( _Left ` a ) e. _V with typecode |-
11 fvex Could not format ( _Right ` a ) e. _V : No typesetting found for |- ( _Right ` a ) e. _V with typecode |-
12 10 11 unex Could not format ( ( _Left ` a ) u. ( _Right ` a ) ) e. _V : No typesetting found for |- ( ( _Left ` a ) u. ( _Right ` a ) ) e. _V with typecode |-
13 12 inex1 Could not format ( ( ( _Left ` a ) u. ( _Right ` a ) ) i^i No ) e. _V : No typesetting found for |- ( ( ( _Left ` a ) u. ( _Right ` a ) ) i^i No ) e. _V with typecode |-
14 9 13 eqeltri Could not format { b e. No | b e. ( ( _Left ` a ) u. ( _Right ` a ) ) } e. _V : No typesetting found for |- { b e. No | b e. ( ( _Left ` a ) u. ( _Right ` a ) ) } e. _V with typecode |-
15 5 14 eqeltrdi aNobNo|bRaV
16 2 15 mprgbir RSeNo