Metamath Proof Explorer


Theorem lrrecse

Description: Next, we show that R is set-like over No . (Contributed by Scott Fenton, 19-Aug-2024)

Ref Expression
Hypothesis lrrec.1 R = x y | x L y R y
Assertion lrrecse R Se No

Proof

Step Hyp Ref Expression
1 lrrec.1 R = x y | x L y R y
2 df-se R Se No a No b No | b R a V
3 1 lrrecval b No a No b R a b L a R a
4 3 ancoms a No b No b R a b L a R a
5 4 rabbidva a No b No | b R a = b No | b L a R a
6 dfrab2 b No | b L a R a = b | b L a R a No
7 abid2 b | b L a R a = L a R a
8 7 ineq1i b | b L a R a No = L a R a No
9 6 8 eqtri b No | b L a R a = L a R a No
10 fvex L a V
11 fvex R a V
12 10 11 unex L a R a V
13 12 inex1 L a R a No V
14 9 13 eqeltri b No | b L a R a V
15 5 14 eqeltrdi a No b No | b R a V
16 2 15 mprgbir R Se No