Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Surreal numbers: Induction and recursion on one variable
lrrecse
Next ⟩
lrrecfr
Metamath Proof Explorer
Ascii
Unicode
Theorem
lrrecse
Description:
Next, we show that
R
is set-like over
No
.
(Contributed by
Scott Fenton
, 19-Aug-2024)
Ref
Expression
Hypothesis
lrrec.1
⊢
R
=
x
y
|
x
∈
L
⁡
y
∪
R
⁡
y
Assertion
lrrecse
⊢
R
Se
No
Proof
Step
Hyp
Ref
Expression
1
lrrec.1
⊢
R
=
x
y
|
x
∈
L
⁡
y
∪
R
⁡
y
2
df-se
⊢
R
Se
No
↔
∀
a
∈
No
b
∈
No
|
b
R
a
∈
V
3
1
lrrecval
⊢
b
∈
No
∧
a
∈
No
→
b
R
a
↔
b
∈
L
⁡
a
∪
R
⁡
a
4
3
ancoms
⊢
a
∈
No
∧
b
∈
No
→
b
R
a
↔
b
∈
L
⁡
a
∪
R
⁡
a
5
4
rabbidva
⊢
a
∈
No
→
b
∈
No
|
b
R
a
=
b
∈
No
|
b
∈
L
⁡
a
∪
R
⁡
a
6
dfrab2
⊢
b
∈
No
|
b
∈
L
⁡
a
∪
R
⁡
a
=
b
|
b
∈
L
⁡
a
∪
R
⁡
a
∩
No
7
abid2
⊢
b
|
b
∈
L
⁡
a
∪
R
⁡
a
=
L
⁡
a
∪
R
⁡
a
8
7
ineq1i
⊢
b
|
b
∈
L
⁡
a
∪
R
⁡
a
∩
No
=
L
⁡
a
∪
R
⁡
a
∩
No
9
6
8
eqtri
⊢
b
∈
No
|
b
∈
L
⁡
a
∪
R
⁡
a
=
L
⁡
a
∪
R
⁡
a
∩
No
10
fvex
⊢
L
⁡
a
∈
V
11
fvex
⊢
R
⁡
a
∈
V
12
10
11
unex
⊢
L
⁡
a
∪
R
⁡
a
∈
V
13
12
inex1
⊢
L
⁡
a
∪
R
⁡
a
∩
No
∈
V
14
9
13
eqeltri
⊢
b
∈
No
|
b
∈
L
⁡
a
∪
R
⁡
a
∈
V
15
5
14
eqeltrdi
⊢
a
∈
No
→
b
∈
No
|
b
R
a
∈
V
16
2
15
mprgbir
⊢
R
Se
No