| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lrrec.1 | ⊢ 𝑅  =  { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } | 
						
							| 2 |  | eleq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) )  ↔  𝐴  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ) ) | 
						
							| 3 |  | fveq2 | ⊢ ( 𝑦  =  𝐵  →  (  L  ‘ 𝑦 )  =  (  L  ‘ 𝐵 ) ) | 
						
							| 4 |  | fveq2 | ⊢ ( 𝑦  =  𝐵  →  (  R  ‘ 𝑦 )  =  (  R  ‘ 𝐵 ) ) | 
						
							| 5 | 3 4 | uneq12d | ⊢ ( 𝑦  =  𝐵  →  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) )  =  ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) ) ) | 
						
							| 6 | 5 | eleq2d | ⊢ ( 𝑦  =  𝐵  →  ( 𝐴  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) )  ↔  𝐴  ∈  ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) ) ) ) | 
						
							| 7 | 2 6 1 | brabg | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 𝐴 𝑅 𝐵  ↔  𝐴  ∈  ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) ) ) ) |