| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lrrec.1 | ⊢ 𝑅  =  { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } | 
						
							| 2 | 1 | lrrecval | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 𝐴 𝑅 𝐵  ↔  𝐴  ∈  ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) ) ) ) | 
						
							| 3 |  | lrold | ⊢ ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  =  (  O  ‘ (  bday  ‘ 𝐵 ) ) | 
						
							| 4 | 3 | a1i | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  =  (  O  ‘ (  bday  ‘ 𝐵 ) ) ) | 
						
							| 5 | 4 | eleq2d | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 𝐴  ∈  ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ↔  𝐴  ∈  (  O  ‘ (  bday  ‘ 𝐵 ) ) ) ) | 
						
							| 6 |  | bdayelon | ⊢ (  bday  ‘ 𝐵 )  ∈  On | 
						
							| 7 |  | oldbday | ⊢ ( ( (  bday  ‘ 𝐵 )  ∈  On  ∧  𝐴  ∈   No  )  →  ( 𝐴  ∈  (  O  ‘ (  bday  ‘ 𝐵 ) )  ↔  (  bday  ‘ 𝐴 )  ∈  (  bday  ‘ 𝐵 ) ) ) | 
						
							| 8 | 6 7 | mpan | ⊢ ( 𝐴  ∈   No   →  ( 𝐴  ∈  (  O  ‘ (  bday  ‘ 𝐵 ) )  ↔  (  bday  ‘ 𝐴 )  ∈  (  bday  ‘ 𝐵 ) ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 𝐴  ∈  (  O  ‘ (  bday  ‘ 𝐵 ) )  ↔  (  bday  ‘ 𝐴 )  ∈  (  bday  ‘ 𝐵 ) ) ) | 
						
							| 10 | 2 5 9 | 3bitrd | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 𝐴 𝑅 𝐵  ↔  (  bday  ‘ 𝐴 )  ∈  (  bday  ‘ 𝐵 ) ) ) |