| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lrrec.1 |  |-  R = { <. x , y >. | x e. ( ( _Left ` y ) u. ( _Right ` y ) ) } | 
						
							| 2 | 1 | lrrecval |  |-  ( ( A e. No /\ B e. No ) -> ( A R B <-> A e. ( ( _Left ` B ) u. ( _Right ` B ) ) ) ) | 
						
							| 3 |  | lrold |  |-  ( ( _Left ` B ) u. ( _Right ` B ) ) = ( _Old ` ( bday ` B ) ) | 
						
							| 4 | 3 | a1i |  |-  ( ( A e. No /\ B e. No ) -> ( ( _Left ` B ) u. ( _Right ` B ) ) = ( _Old ` ( bday ` B ) ) ) | 
						
							| 5 | 4 | eleq2d |  |-  ( ( A e. No /\ B e. No ) -> ( A e. ( ( _Left ` B ) u. ( _Right ` B ) ) <-> A e. ( _Old ` ( bday ` B ) ) ) ) | 
						
							| 6 |  | bdayelon |  |-  ( bday ` B ) e. On | 
						
							| 7 |  | oldbday |  |-  ( ( ( bday ` B ) e. On /\ A e. No ) -> ( A e. ( _Old ` ( bday ` B ) ) <-> ( bday ` A ) e. ( bday ` B ) ) ) | 
						
							| 8 | 6 7 | mpan |  |-  ( A e. No -> ( A e. ( _Old ` ( bday ` B ) ) <-> ( bday ` A ) e. ( bday ` B ) ) ) | 
						
							| 9 | 8 | adantr |  |-  ( ( A e. No /\ B e. No ) -> ( A e. ( _Old ` ( bday ` B ) ) <-> ( bday ` A ) e. ( bday ` B ) ) ) | 
						
							| 10 | 2 5 9 | 3bitrd |  |-  ( ( A e. No /\ B e. No ) -> ( A R B <-> ( bday ` A ) e. ( bday ` B ) ) ) |