Metamath Proof Explorer


Theorem oldbday

Description: A surreal is part of the set older than ordinal A iff its birthday is less than A . Remark in Conway p. 29. (Contributed by Scott Fenton, 19-Aug-2024)

Ref Expression
Assertion oldbday
|- ( ( A e. On /\ X e. No ) -> ( X e. ( _Old ` A ) <-> ( bday ` X ) e. A ) )

Proof

Step Hyp Ref Expression
1 oldbdayim
 |-  ( X e. ( _Old ` A ) -> ( bday ` X ) e. A )
2 simpl
 |-  ( ( A e. On /\ X e. No ) -> A e. On )
3 onelon
 |-  ( ( A e. On /\ b e. A ) -> b e. On )
4 madebday
 |-  ( ( b e. On /\ y e. No ) -> ( y e. ( _M ` b ) <-> ( bday ` y ) C_ b ) )
5 4 biimprd
 |-  ( ( b e. On /\ y e. No ) -> ( ( bday ` y ) C_ b -> y e. ( _M ` b ) ) )
6 3 5 sylan
 |-  ( ( ( A e. On /\ b e. A ) /\ y e. No ) -> ( ( bday ` y ) C_ b -> y e. ( _M ` b ) ) )
7 6 anasss
 |-  ( ( A e. On /\ ( b e. A /\ y e. No ) ) -> ( ( bday ` y ) C_ b -> y e. ( _M ` b ) ) )
8 7 ralrimivva
 |-  ( A e. On -> A. b e. A A. y e. No ( ( bday ` y ) C_ b -> y e. ( _M ` b ) ) )
9 8 adantr
 |-  ( ( A e. On /\ X e. No ) -> A. b e. A A. y e. No ( ( bday ` y ) C_ b -> y e. ( _M ` b ) ) )
10 simpr
 |-  ( ( A e. On /\ X e. No ) -> X e. No )
11 madebdaylemold
 |-  ( ( A e. On /\ A. b e. A A. y e. No ( ( bday ` y ) C_ b -> y e. ( _M ` b ) ) /\ X e. No ) -> ( ( bday ` X ) e. A -> X e. ( _Old ` A ) ) )
12 2 9 10 11 syl3anc
 |-  ( ( A e. On /\ X e. No ) -> ( ( bday ` X ) e. A -> X e. ( _Old ` A ) ) )
13 1 12 impbid2
 |-  ( ( A e. On /\ X e. No ) -> ( X e. ( _Old ` A ) <-> ( bday ` X ) e. A ) )