Step |
Hyp |
Ref |
Expression |
1 |
|
madebdayim |
|- ( X e. ( _M ` A ) -> ( bday ` X ) C_ A ) |
2 |
|
sseq2 |
|- ( a = b -> ( ( bday ` x ) C_ a <-> ( bday ` x ) C_ b ) ) |
3 |
|
fveq2 |
|- ( a = b -> ( _M ` a ) = ( _M ` b ) ) |
4 |
3
|
eleq2d |
|- ( a = b -> ( x e. ( _M ` a ) <-> x e. ( _M ` b ) ) ) |
5 |
2 4
|
imbi12d |
|- ( a = b -> ( ( ( bday ` x ) C_ a -> x e. ( _M ` a ) ) <-> ( ( bday ` x ) C_ b -> x e. ( _M ` b ) ) ) ) |
6 |
5
|
ralbidv |
|- ( a = b -> ( A. x e. No ( ( bday ` x ) C_ a -> x e. ( _M ` a ) ) <-> A. x e. No ( ( bday ` x ) C_ b -> x e. ( _M ` b ) ) ) ) |
7 |
|
fveq2 |
|- ( x = y -> ( bday ` x ) = ( bday ` y ) ) |
8 |
7
|
sseq1d |
|- ( x = y -> ( ( bday ` x ) C_ b <-> ( bday ` y ) C_ b ) ) |
9 |
|
eleq1 |
|- ( x = y -> ( x e. ( _M ` b ) <-> y e. ( _M ` b ) ) ) |
10 |
8 9
|
imbi12d |
|- ( x = y -> ( ( ( bday ` x ) C_ b -> x e. ( _M ` b ) ) <-> ( ( bday ` y ) C_ b -> y e. ( _M ` b ) ) ) ) |
11 |
10
|
cbvralvw |
|- ( A. x e. No ( ( bday ` x ) C_ b -> x e. ( _M ` b ) ) <-> A. y e. No ( ( bday ` y ) C_ b -> y e. ( _M ` b ) ) ) |
12 |
6 11
|
bitrdi |
|- ( a = b -> ( A. x e. No ( ( bday ` x ) C_ a -> x e. ( _M ` a ) ) <-> A. y e. No ( ( bday ` y ) C_ b -> y e. ( _M ` b ) ) ) ) |
13 |
|
sseq2 |
|- ( a = A -> ( ( bday ` x ) C_ a <-> ( bday ` x ) C_ A ) ) |
14 |
|
fveq2 |
|- ( a = A -> ( _M ` a ) = ( _M ` A ) ) |
15 |
14
|
eleq2d |
|- ( a = A -> ( x e. ( _M ` a ) <-> x e. ( _M ` A ) ) ) |
16 |
13 15
|
imbi12d |
|- ( a = A -> ( ( ( bday ` x ) C_ a -> x e. ( _M ` a ) ) <-> ( ( bday ` x ) C_ A -> x e. ( _M ` A ) ) ) ) |
17 |
16
|
ralbidv |
|- ( a = A -> ( A. x e. No ( ( bday ` x ) C_ a -> x e. ( _M ` a ) ) <-> A. x e. No ( ( bday ` x ) C_ A -> x e. ( _M ` A ) ) ) ) |
18 |
|
bdayelon |
|- ( bday ` x ) e. On |
19 |
|
onsseleq |
|- ( ( ( bday ` x ) e. On /\ a e. On ) -> ( ( bday ` x ) C_ a <-> ( ( bday ` x ) e. a \/ ( bday ` x ) = a ) ) ) |
20 |
18 19
|
mpan |
|- ( a e. On -> ( ( bday ` x ) C_ a <-> ( ( bday ` x ) e. a \/ ( bday ` x ) = a ) ) ) |
21 |
20
|
ad2antrr |
|- ( ( ( a e. On /\ A. b e. a A. y e. No ( ( bday ` y ) C_ b -> y e. ( _M ` b ) ) ) /\ x e. No ) -> ( ( bday ` x ) C_ a <-> ( ( bday ` x ) e. a \/ ( bday ` x ) = a ) ) ) |
22 |
|
simpll |
|- ( ( ( a e. On /\ A. b e. a A. y e. No ( ( bday ` y ) C_ b -> y e. ( _M ` b ) ) ) /\ x e. No ) -> a e. On ) |
23 |
|
onelss |
|- ( a e. On -> ( ( bday ` x ) e. a -> ( bday ` x ) C_ a ) ) |
24 |
23
|
ad2antrr |
|- ( ( ( a e. On /\ A. b e. a A. y e. No ( ( bday ` y ) C_ b -> y e. ( _M ` b ) ) ) /\ x e. No ) -> ( ( bday ` x ) e. a -> ( bday ` x ) C_ a ) ) |
25 |
24
|
imp |
|- ( ( ( ( a e. On /\ A. b e. a A. y e. No ( ( bday ` y ) C_ b -> y e. ( _M ` b ) ) ) /\ x e. No ) /\ ( bday ` x ) e. a ) -> ( bday ` x ) C_ a ) |
26 |
|
madess |
|- ( ( a e. On /\ ( bday ` x ) C_ a ) -> ( _M ` ( bday ` x ) ) C_ ( _M ` a ) ) |
27 |
22 25 26
|
syl2an2r |
|- ( ( ( ( a e. On /\ A. b e. a A. y e. No ( ( bday ` y ) C_ b -> y e. ( _M ` b ) ) ) /\ x e. No ) /\ ( bday ` x ) e. a ) -> ( _M ` ( bday ` x ) ) C_ ( _M ` a ) ) |
28 |
|
ssid |
|- ( bday ` x ) C_ ( bday ` x ) |
29 |
|
simpr |
|- ( ( ( ( a e. On /\ A. b e. a A. y e. No ( ( bday ` y ) C_ b -> y e. ( _M ` b ) ) ) /\ x e. No ) /\ ( bday ` x ) e. a ) -> ( bday ` x ) e. a ) |
30 |
|
simplr |
|- ( ( ( ( a e. On /\ A. b e. a A. y e. No ( ( bday ` y ) C_ b -> y e. ( _M ` b ) ) ) /\ x e. No ) /\ ( bday ` x ) e. a ) -> x e. No ) |
31 |
29 30
|
jca |
|- ( ( ( ( a e. On /\ A. b e. a A. y e. No ( ( bday ` y ) C_ b -> y e. ( _M ` b ) ) ) /\ x e. No ) /\ ( bday ` x ) e. a ) -> ( ( bday ` x ) e. a /\ x e. No ) ) |
32 |
|
simpllr |
|- ( ( ( ( a e. On /\ A. b e. a A. y e. No ( ( bday ` y ) C_ b -> y e. ( _M ` b ) ) ) /\ x e. No ) /\ ( bday ` x ) e. a ) -> A. b e. a A. y e. No ( ( bday ` y ) C_ b -> y e. ( _M ` b ) ) ) |
33 |
|
sseq2 |
|- ( b = ( bday ` x ) -> ( ( bday ` y ) C_ b <-> ( bday ` y ) C_ ( bday ` x ) ) ) |
34 |
|
fveq2 |
|- ( b = ( bday ` x ) -> ( _M ` b ) = ( _M ` ( bday ` x ) ) ) |
35 |
34
|
eleq2d |
|- ( b = ( bday ` x ) -> ( y e. ( _M ` b ) <-> y e. ( _M ` ( bday ` x ) ) ) ) |
36 |
33 35
|
imbi12d |
|- ( b = ( bday ` x ) -> ( ( ( bday ` y ) C_ b -> y e. ( _M ` b ) ) <-> ( ( bday ` y ) C_ ( bday ` x ) -> y e. ( _M ` ( bday ` x ) ) ) ) ) |
37 |
|
fveq2 |
|- ( y = x -> ( bday ` y ) = ( bday ` x ) ) |
38 |
37
|
sseq1d |
|- ( y = x -> ( ( bday ` y ) C_ ( bday ` x ) <-> ( bday ` x ) C_ ( bday ` x ) ) ) |
39 |
|
eleq1 |
|- ( y = x -> ( y e. ( _M ` ( bday ` x ) ) <-> x e. ( _M ` ( bday ` x ) ) ) ) |
40 |
38 39
|
imbi12d |
|- ( y = x -> ( ( ( bday ` y ) C_ ( bday ` x ) -> y e. ( _M ` ( bday ` x ) ) ) <-> ( ( bday ` x ) C_ ( bday ` x ) -> x e. ( _M ` ( bday ` x ) ) ) ) ) |
41 |
36 40
|
rspc2v |
|- ( ( ( bday ` x ) e. a /\ x e. No ) -> ( A. b e. a A. y e. No ( ( bday ` y ) C_ b -> y e. ( _M ` b ) ) -> ( ( bday ` x ) C_ ( bday ` x ) -> x e. ( _M ` ( bday ` x ) ) ) ) ) |
42 |
31 32 41
|
sylc |
|- ( ( ( ( a e. On /\ A. b e. a A. y e. No ( ( bday ` y ) C_ b -> y e. ( _M ` b ) ) ) /\ x e. No ) /\ ( bday ` x ) e. a ) -> ( ( bday ` x ) C_ ( bday ` x ) -> x e. ( _M ` ( bday ` x ) ) ) ) |
43 |
28 42
|
mpi |
|- ( ( ( ( a e. On /\ A. b e. a A. y e. No ( ( bday ` y ) C_ b -> y e. ( _M ` b ) ) ) /\ x e. No ) /\ ( bday ` x ) e. a ) -> x e. ( _M ` ( bday ` x ) ) ) |
44 |
27 43
|
sseldd |
|- ( ( ( ( a e. On /\ A. b e. a A. y e. No ( ( bday ` y ) C_ b -> y e. ( _M ` b ) ) ) /\ x e. No ) /\ ( bday ` x ) e. a ) -> x e. ( _M ` a ) ) |
45 |
44
|
ex |
|- ( ( ( a e. On /\ A. b e. a A. y e. No ( ( bday ` y ) C_ b -> y e. ( _M ` b ) ) ) /\ x e. No ) -> ( ( bday ` x ) e. a -> x e. ( _M ` a ) ) ) |
46 |
|
madebdaylemlrcut |
|- ( ( A. b e. ( bday ` x ) A. y e. No ( ( bday ` y ) C_ b -> y e. ( _M ` b ) ) /\ x e. No ) -> ( ( _L ` x ) |s ( _R ` x ) ) = x ) |
47 |
18
|
a1i |
|- ( x e. No -> ( bday ` x ) e. On ) |
48 |
|
lltropt |
|- ( x e. No -> ( _L ` x ) < |
49 |
|
leftssold |
|- ( _L ` x ) C_ ( _Old ` ( bday ` x ) ) |
50 |
49
|
a1i |
|- ( x e. No -> ( _L ` x ) C_ ( _Old ` ( bday ` x ) ) ) |
51 |
|
rightssold |
|- ( _R ` x ) C_ ( _Old ` ( bday ` x ) ) |
52 |
51
|
a1i |
|- ( x e. No -> ( _R ` x ) C_ ( _Old ` ( bday ` x ) ) ) |
53 |
|
madecut |
|- ( ( ( ( bday ` x ) e. On /\ ( _L ` x ) < ( ( _L ` x ) |s ( _R ` x ) ) e. ( _M ` ( bday ` x ) ) ) |
54 |
47 48 50 52 53
|
syl22anc |
|- ( x e. No -> ( ( _L ` x ) |s ( _R ` x ) ) e. ( _M ` ( bday ` x ) ) ) |
55 |
54
|
adantl |
|- ( ( A. b e. ( bday ` x ) A. y e. No ( ( bday ` y ) C_ b -> y e. ( _M ` b ) ) /\ x e. No ) -> ( ( _L ` x ) |s ( _R ` x ) ) e. ( _M ` ( bday ` x ) ) ) |
56 |
46 55
|
eqeltrrd |
|- ( ( A. b e. ( bday ` x ) A. y e. No ( ( bday ` y ) C_ b -> y e. ( _M ` b ) ) /\ x e. No ) -> x e. ( _M ` ( bday ` x ) ) ) |
57 |
|
raleq |
|- ( ( bday ` x ) = a -> ( A. b e. ( bday ` x ) A. y e. No ( ( bday ` y ) C_ b -> y e. ( _M ` b ) ) <-> A. b e. a A. y e. No ( ( bday ` y ) C_ b -> y e. ( _M ` b ) ) ) ) |
58 |
57
|
anbi1d |
|- ( ( bday ` x ) = a -> ( ( A. b e. ( bday ` x ) A. y e. No ( ( bday ` y ) C_ b -> y e. ( _M ` b ) ) /\ x e. No ) <-> ( A. b e. a A. y e. No ( ( bday ` y ) C_ b -> y e. ( _M ` b ) ) /\ x e. No ) ) ) |
59 |
|
fveq2 |
|- ( ( bday ` x ) = a -> ( _M ` ( bday ` x ) ) = ( _M ` a ) ) |
60 |
59
|
eleq2d |
|- ( ( bday ` x ) = a -> ( x e. ( _M ` ( bday ` x ) ) <-> x e. ( _M ` a ) ) ) |
61 |
58 60
|
imbi12d |
|- ( ( bday ` x ) = a -> ( ( ( A. b e. ( bday ` x ) A. y e. No ( ( bday ` y ) C_ b -> y e. ( _M ` b ) ) /\ x e. No ) -> x e. ( _M ` ( bday ` x ) ) ) <-> ( ( A. b e. a A. y e. No ( ( bday ` y ) C_ b -> y e. ( _M ` b ) ) /\ x e. No ) -> x e. ( _M ` a ) ) ) ) |
62 |
56 61
|
mpbii |
|- ( ( bday ` x ) = a -> ( ( A. b e. a A. y e. No ( ( bday ` y ) C_ b -> y e. ( _M ` b ) ) /\ x e. No ) -> x e. ( _M ` a ) ) ) |
63 |
62
|
com12 |
|- ( ( A. b e. a A. y e. No ( ( bday ` y ) C_ b -> y e. ( _M ` b ) ) /\ x e. No ) -> ( ( bday ` x ) = a -> x e. ( _M ` a ) ) ) |
64 |
63
|
adantll |
|- ( ( ( a e. On /\ A. b e. a A. y e. No ( ( bday ` y ) C_ b -> y e. ( _M ` b ) ) ) /\ x e. No ) -> ( ( bday ` x ) = a -> x e. ( _M ` a ) ) ) |
65 |
45 64
|
jaod |
|- ( ( ( a e. On /\ A. b e. a A. y e. No ( ( bday ` y ) C_ b -> y e. ( _M ` b ) ) ) /\ x e. No ) -> ( ( ( bday ` x ) e. a \/ ( bday ` x ) = a ) -> x e. ( _M ` a ) ) ) |
66 |
21 65
|
sylbid |
|- ( ( ( a e. On /\ A. b e. a A. y e. No ( ( bday ` y ) C_ b -> y e. ( _M ` b ) ) ) /\ x e. No ) -> ( ( bday ` x ) C_ a -> x e. ( _M ` a ) ) ) |
67 |
66
|
ralrimiva |
|- ( ( a e. On /\ A. b e. a A. y e. No ( ( bday ` y ) C_ b -> y e. ( _M ` b ) ) ) -> A. x e. No ( ( bday ` x ) C_ a -> x e. ( _M ` a ) ) ) |
68 |
67
|
ex |
|- ( a e. On -> ( A. b e. a A. y e. No ( ( bday ` y ) C_ b -> y e. ( _M ` b ) ) -> A. x e. No ( ( bday ` x ) C_ a -> x e. ( _M ` a ) ) ) ) |
69 |
12 17 68
|
tfis3 |
|- ( A e. On -> A. x e. No ( ( bday ` x ) C_ A -> x e. ( _M ` A ) ) ) |
70 |
|
fveq2 |
|- ( x = X -> ( bday ` x ) = ( bday ` X ) ) |
71 |
70
|
sseq1d |
|- ( x = X -> ( ( bday ` x ) C_ A <-> ( bday ` X ) C_ A ) ) |
72 |
|
eleq1 |
|- ( x = X -> ( x e. ( _M ` A ) <-> X e. ( _M ` A ) ) ) |
73 |
71 72
|
imbi12d |
|- ( x = X -> ( ( ( bday ` x ) C_ A -> x e. ( _M ` A ) ) <-> ( ( bday ` X ) C_ A -> X e. ( _M ` A ) ) ) ) |
74 |
73
|
rspccva |
|- ( ( A. x e. No ( ( bday ` x ) C_ A -> x e. ( _M ` A ) ) /\ X e. No ) -> ( ( bday ` X ) C_ A -> X e. ( _M ` A ) ) ) |
75 |
69 74
|
sylan |
|- ( ( A e. On /\ X e. No ) -> ( ( bday ` X ) C_ A -> X e. ( _M ` A ) ) ) |
76 |
1 75
|
impbid2 |
|- ( ( A e. On /\ X e. No ) -> ( X e. ( _M ` A ) <-> ( bday ` X ) C_ A ) ) |