Metamath Proof Explorer


Theorem lltropt

Description: The left options of a surreal are strictly less than the right options of the same surreal. (Contributed by Scott Fenton, 6-Aug-2024)

Ref Expression
Assertion lltropt
|- ( A e. No -> ( _L ` A ) <

Proof

Step Hyp Ref Expression
1 ssltleft
 |-  ( A e. No -> ( _L ` A ) <
2 ssltright
 |-  ( A e. No -> { A } <
3 snnzg
 |-  ( A e. No -> { A } =/= (/) )
4 sslttr
 |-  ( ( ( _L ` A ) < ( _L ` A ) <
5 1 2 3 4 syl3anc
 |-  ( A e. No -> ( _L ` A ) <