Step |
Hyp |
Ref |
Expression |
1 |
|
df-right |
|- _R = ( x e. No |-> { y e. ( _Old ` ( bday ` x ) ) | x |
2 |
|
bdayelon |
|- ( bday ` x ) e. On |
3 |
|
oldf |
|- _Old : On --> ~P No |
4 |
3
|
ffvelrni |
|- ( ( bday ` x ) e. On -> ( _Old ` ( bday ` x ) ) e. ~P No ) |
5 |
2 4
|
mp1i |
|- ( x e. No -> ( _Old ` ( bday ` x ) ) e. ~P No ) |
6 |
5
|
elpwid |
|- ( x e. No -> ( _Old ` ( bday ` x ) ) C_ No ) |
7 |
6
|
sselda |
|- ( ( x e. No /\ y e. ( _Old ` ( bday ` x ) ) ) -> y e. No ) |
8 |
7
|
a1d |
|- ( ( x e. No /\ y e. ( _Old ` ( bday ` x ) ) ) -> ( x y e. No ) ) |
9 |
8
|
ralrimiva |
|- ( x e. No -> A. y e. ( _Old ` ( bday ` x ) ) ( x y e. No ) ) |
10 |
|
fvex |
|- ( _Old ` ( bday ` x ) ) e. _V |
11 |
10
|
rabex |
|- { y e. ( _Old ` ( bday ` x ) ) | x |
12 |
11
|
elpw |
|- ( { y e. ( _Old ` ( bday ` x ) ) | x { y e. ( _Old ` ( bday ` x ) ) | x |
13 |
|
rabss |
|- ( { y e. ( _Old ` ( bday ` x ) ) | x A. y e. ( _Old ` ( bday ` x ) ) ( x y e. No ) ) |
14 |
12 13
|
bitri |
|- ( { y e. ( _Old ` ( bday ` x ) ) | x A. y e. ( _Old ` ( bday ` x ) ) ( x y e. No ) ) |
15 |
9 14
|
sylibr |
|- ( x e. No -> { y e. ( _Old ` ( bday ` x ) ) | x |
16 |
1 15
|
fmpti |
|- _R : No --> ~P No |