| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
|- ( a = b -> ( bday ` a ) = ( bday ` b ) ) |
| 2 |
|
breq2 |
|- ( a = b -> ( x x |
| 3 |
2
|
rabbidv |
|- ( a = b -> { x e. On_s | x |
| 4 |
|
breq1 |
|- ( x = y -> ( x y |
| 5 |
4
|
cbvrabv |
|- { x e. On_s | x |
| 6 |
3 5
|
eqtrdi |
|- ( a = b -> { x e. On_s | x |
| 7 |
6
|
imaeq2d |
|- ( a = b -> ( bday " { x e. On_s | x |
| 8 |
1 7
|
eqeq12d |
|- ( a = b -> ( ( bday ` a ) = ( bday " { x e. On_s | x ( bday ` b ) = ( bday " { y e. On_s | y |
| 9 |
|
fveq2 |
|- ( a = A -> ( bday ` a ) = ( bday ` A ) ) |
| 10 |
|
breq2 |
|- ( a = A -> ( x x |
| 11 |
10
|
rabbidv |
|- ( a = A -> { x e. On_s | x |
| 12 |
11
|
imaeq2d |
|- ( a = A -> ( bday " { x e. On_s | x |
| 13 |
9 12
|
eqeq12d |
|- ( a = A -> ( ( bday ` a ) = ( bday " { x e. On_s | x ( bday ` A ) = ( bday " { x e. On_s | x |
| 14 |
|
onscutlt |
|- ( a e. On_s -> a = ( { x e. On_s | x |
| 15 |
14
|
adantr |
|- ( ( a e. On_s /\ A. b e. On_s ( b ( bday ` b ) = ( bday " { y e. On_s | y a = ( { x e. On_s | x |
| 16 |
15
|
fveq2d |
|- ( ( a e. On_s /\ A. b e. On_s ( b ( bday ` b ) = ( bday " { y e. On_s | y ( bday ` a ) = ( bday ` ( { x e. On_s | x |
| 17 |
|
onsno |
|- ( a e. On_s -> a e. No ) |
| 18 |
|
sltonex |
|- ( a e. No -> { x e. On_s | x |
| 19 |
17 18
|
syl |
|- ( a e. On_s -> { x e. On_s | x |
| 20 |
19
|
adantr |
|- ( ( a e. On_s /\ A. b e. On_s ( b ( bday ` b ) = ( bday " { y e. On_s | y { x e. On_s | x |
| 21 |
|
ssrab2 |
|- { x e. On_s | x |
| 22 |
|
onssno |
|- On_s C_ No |
| 23 |
21 22
|
sstri |
|- { x e. On_s | x |
| 24 |
23
|
a1i |
|- ( ( a e. On_s /\ A. b e. On_s ( b ( bday ` b ) = ( bday " { y e. On_s | y { x e. On_s | x |
| 25 |
20 24
|
elpwd |
|- ( ( a e. On_s /\ A. b e. On_s ( b ( bday ` b ) = ( bday " { y e. On_s | y { x e. On_s | x |
| 26 |
|
nulssgt |
|- ( { x e. On_s | x { x e. On_s | x |
| 27 |
25 26
|
syl |
|- ( ( a e. On_s /\ A. b e. On_s ( b ( bday ` b ) = ( bday " { y e. On_s | y { x e. On_s | x |
| 28 |
|
bdayfn |
|- bday Fn No |
| 29 |
|
fvelimab |
|- ( ( bday Fn No /\ { x e. On_s | x ( q e. ( bday " { x e. On_s | x E. z e. { x e. On_s | x |
| 30 |
28 23 29
|
mp2an |
|- ( q e. ( bday " { x e. On_s | x E. z e. { x e. On_s | x |
| 31 |
|
breq1 |
|- ( x = z -> ( x z |
| 32 |
31
|
rexrab |
|- ( E. z e. { x e. On_s | x E. z e. On_s ( z |
| 33 |
30 32
|
bitri |
|- ( q e. ( bday " { x e. On_s | x E. z e. On_s ( z |
| 34 |
|
breq1 |
|- ( b = z -> ( b z |
| 35 |
|
fveq2 |
|- ( b = z -> ( bday ` b ) = ( bday ` z ) ) |
| 36 |
|
breq2 |
|- ( b = z -> ( y y |
| 37 |
36
|
rabbidv |
|- ( b = z -> { y e. On_s | y |
| 38 |
|
breq1 |
|- ( x = y -> ( x y |
| 39 |
38
|
cbvrabv |
|- { x e. On_s | x |
| 40 |
37 39
|
eqtr4di |
|- ( b = z -> { y e. On_s | y |
| 41 |
40
|
imaeq2d |
|- ( b = z -> ( bday " { y e. On_s | y |
| 42 |
35 41
|
eqeq12d |
|- ( b = z -> ( ( bday ` b ) = ( bday " { y e. On_s | y ( bday ` z ) = ( bday " { x e. On_s | x |
| 43 |
34 42
|
imbi12d |
|- ( b = z -> ( ( b ( bday ` b ) = ( bday " { y e. On_s | y ( z ( bday ` z ) = ( bday " { x e. On_s | x |
| 44 |
43
|
rspccv |
|- ( A. b e. On_s ( b ( bday ` b ) = ( bday " { y e. On_s | y ( z e. On_s -> ( z ( bday ` z ) = ( bday " { x e. On_s | x |
| 45 |
44
|
imp |
|- ( ( A. b e. On_s ( b ( bday ` b ) = ( bday " { y e. On_s | y ( z ( bday ` z ) = ( bday " { x e. On_s | x |
| 46 |
45
|
adantll |
|- ( ( ( a e. On_s /\ A. b e. On_s ( b ( bday ` b ) = ( bday " { y e. On_s | y ( z ( bday ` z ) = ( bday " { x e. On_s | x |
| 47 |
46
|
impr |
|- ( ( ( a e. On_s /\ A. b e. On_s ( b ( bday ` b ) = ( bday " { y e. On_s | y ( bday ` z ) = ( bday " { x e. On_s | x |
| 48 |
|
simplrr |
|- ( ( ( ( a e. On_s /\ A. b e. On_s ( b ( bday ` b ) = ( bday " { y e. On_s | y z |
| 49 |
|
onsno |
|- ( x e. On_s -> x e. No ) |
| 50 |
49
|
adantl |
|- ( ( ( ( a e. On_s /\ A. b e. On_s ( b ( bday ` b ) = ( bday " { y e. On_s | y x e. No ) |
| 51 |
|
simplrl |
|- ( ( ( ( a e. On_s /\ A. b e. On_s ( b ( bday ` b ) = ( bday " { y e. On_s | y z e. On_s ) |
| 52 |
|
onsno |
|- ( z e. On_s -> z e. No ) |
| 53 |
51 52
|
syl |
|- ( ( ( ( a e. On_s /\ A. b e. On_s ( b ( bday ` b ) = ( bday " { y e. On_s | y z e. No ) |
| 54 |
|
simplll |
|- ( ( ( ( a e. On_s /\ A. b e. On_s ( b ( bday ` b ) = ( bday " { y e. On_s | y a e. On_s ) |
| 55 |
54 17
|
syl |
|- ( ( ( ( a e. On_s /\ A. b e. On_s ( b ( bday ` b ) = ( bday " { y e. On_s | y a e. No ) |
| 56 |
|
slttr |
|- ( ( x e. No /\ z e. No /\ a e. No ) -> ( ( x x |
| 57 |
50 53 55 56
|
syl3anc |
|- ( ( ( ( a e. On_s /\ A. b e. On_s ( b ( bday ` b ) = ( bday " { y e. On_s | y ( ( x x |
| 58 |
48 57
|
mpan2d |
|- ( ( ( ( a e. On_s /\ A. b e. On_s ( b ( bday ` b ) = ( bday " { y e. On_s | y ( x x |
| 59 |
58
|
ss2rabdv |
|- ( ( ( a e. On_s /\ A. b e. On_s ( b ( bday ` b ) = ( bday " { y e. On_s | y { x e. On_s | x |
| 60 |
|
imass2 |
|- ( { x e. On_s | x ( bday " { x e. On_s | x |
| 61 |
59 60
|
syl |
|- ( ( ( a e. On_s /\ A. b e. On_s ( b ( bday ` b ) = ( bday " { y e. On_s | y ( bday " { x e. On_s | x |
| 62 |
47 61
|
eqsstrd |
|- ( ( ( a e. On_s /\ A. b e. On_s ( b ( bday ` b ) = ( bday " { y e. On_s | y ( bday ` z ) C_ ( bday " { x e. On_s | x |
| 63 |
62
|
sseld |
|- ( ( ( a e. On_s /\ A. b e. On_s ( b ( bday ` b ) = ( bday " { y e. On_s | y ( p e. ( bday ` z ) -> p e. ( bday " { x e. On_s | x |
| 64 |
|
eleq2 |
|- ( ( bday ` z ) = q -> ( p e. ( bday ` z ) <-> p e. q ) ) |
| 65 |
64
|
imbi1d |
|- ( ( bday ` z ) = q -> ( ( p e. ( bday ` z ) -> p e. ( bday " { x e. On_s | x ( p e. q -> p e. ( bday " { x e. On_s | x |
| 66 |
65
|
bicomd |
|- ( ( bday ` z ) = q -> ( ( p e. q -> p e. ( bday " { x e. On_s | x ( p e. ( bday ` z ) -> p e. ( bday " { x e. On_s | x |
| 67 |
63 66
|
syl5ibrcom |
|- ( ( ( a e. On_s /\ A. b e. On_s ( b ( bday ` b ) = ( bday " { y e. On_s | y ( ( bday ` z ) = q -> ( p e. q -> p e. ( bday " { x e. On_s | x |
| 68 |
67
|
expr |
|- ( ( ( a e. On_s /\ A. b e. On_s ( b ( bday ` b ) = ( bday " { y e. On_s | y ( z ( ( bday ` z ) = q -> ( p e. q -> p e. ( bday " { x e. On_s | x |
| 69 |
68
|
impd |
|- ( ( ( a e. On_s /\ A. b e. On_s ( b ( bday ` b ) = ( bday " { y e. On_s | y ( ( z ( p e. q -> p e. ( bday " { x e. On_s | x |
| 70 |
69
|
rexlimdva |
|- ( ( a e. On_s /\ A. b e. On_s ( b ( bday ` b ) = ( bday " { y e. On_s | y ( E. z e. On_s ( z ( p e. q -> p e. ( bday " { x e. On_s | x |
| 71 |
33 70
|
biimtrid |
|- ( ( a e. On_s /\ A. b e. On_s ( b ( bday ` b ) = ( bday " { y e. On_s | y ( q e. ( bday " { x e. On_s | x ( p e. q -> p e. ( bday " { x e. On_s | x |
| 72 |
71
|
impcomd |
|- ( ( a e. On_s /\ A. b e. On_s ( b ( bday ` b ) = ( bday " { y e. On_s | y ( ( p e. q /\ q e. ( bday " { x e. On_s | x p e. ( bday " { x e. On_s | x |
| 73 |
72
|
alrimivv |
|- ( ( a e. On_s /\ A. b e. On_s ( b ( bday ` b ) = ( bday " { y e. On_s | y A. p A. q ( ( p e. q /\ q e. ( bday " { x e. On_s | x p e. ( bday " { x e. On_s | x |
| 74 |
|
imassrn |
|- ( bday " { x e. On_s | x |
| 75 |
|
bdayrn |
|- ran bday = On |
| 76 |
74 75
|
sseqtri |
|- ( bday " { x e. On_s | x |
| 77 |
|
dford5 |
|- ( Ord ( bday " { x e. On_s | x ( ( bday " { x e. On_s | x |
| 78 |
76 77
|
mpbiran |
|- ( Ord ( bday " { x e. On_s | x Tr ( bday " { x e. On_s | x |
| 79 |
|
dftr2 |
|- ( Tr ( bday " { x e. On_s | x A. p A. q ( ( p e. q /\ q e. ( bday " { x e. On_s | x p e. ( bday " { x e. On_s | x |
| 80 |
78 79
|
bitri |
|- ( Ord ( bday " { x e. On_s | x A. p A. q ( ( p e. q /\ q e. ( bday " { x e. On_s | x p e. ( bday " { x e. On_s | x |
| 81 |
73 80
|
sylibr |
|- ( ( a e. On_s /\ A. b e. On_s ( b ( bday ` b ) = ( bday " { y e. On_s | y Ord ( bday " { x e. On_s | x |
| 82 |
|
bdayfun |
|- Fun bday |
| 83 |
|
funimaexg |
|- ( ( Fun bday /\ { x e. On_s | x ( bday " { x e. On_s | x |
| 84 |
82 20 83
|
sylancr |
|- ( ( a e. On_s /\ A. b e. On_s ( b ( bday ` b ) = ( bday " { y e. On_s | y ( bday " { x e. On_s | x |
| 85 |
|
elon2 |
|- ( ( bday " { x e. On_s | x ( Ord ( bday " { x e. On_s | x |
| 86 |
81 84 85
|
sylanbrc |
|- ( ( a e. On_s /\ A. b e. On_s ( b ( bday ` b ) = ( bday " { y e. On_s | y ( bday " { x e. On_s | x |
| 87 |
|
un0 |
|- ( { x e. On_s | x |
| 88 |
87
|
imaeq2i |
|- ( bday " ( { x e. On_s | x |
| 89 |
88
|
eqimssi |
|- ( bday " ( { x e. On_s | x |
| 90 |
|
scutbdaybnd |
|- ( ( { x e. On_s | x ( bday ` ( { x e. On_s | x |
| 91 |
89 90
|
mp3an3 |
|- ( ( { x e. On_s | x ( bday ` ( { x e. On_s | x |
| 92 |
27 86 91
|
syl2anc |
|- ( ( a e. On_s /\ A. b e. On_s ( b ( bday ` b ) = ( bday " { y e. On_s | y ( bday ` ( { x e. On_s | x |
| 93 |
16 92
|
eqsstrd |
|- ( ( a e. On_s /\ A. b e. On_s ( b ( bday ` b ) = ( bday " { y e. On_s | y ( bday ` a ) C_ ( bday " { x e. On_s | x |
| 94 |
|
simpr |
|- ( ( ( a e. On_s /\ A. b e. On_s ( b ( bday ` b ) = ( bday " { y e. On_s | y z e. On_s ) |
| 95 |
|
simpll |
|- ( ( ( a e. On_s /\ A. b e. On_s ( b ( bday ` b ) = ( bday " { y e. On_s | y a e. On_s ) |
| 96 |
|
onslt |
|- ( ( z e. On_s /\ a e. On_s ) -> ( z ( bday ` z ) e. ( bday ` a ) ) ) |
| 97 |
94 95 96
|
syl2anc |
|- ( ( ( a e. On_s /\ A. b e. On_s ( b ( bday ` b ) = ( bday " { y e. On_s | y ( z ( bday ` z ) e. ( bday ` a ) ) ) |
| 98 |
97
|
biimpd |
|- ( ( ( a e. On_s /\ A. b e. On_s ( b ( bday ` b ) = ( bday " { y e. On_s | y ( z ( bday ` z ) e. ( bday ` a ) ) ) |
| 99 |
98
|
ralrimiva |
|- ( ( a e. On_s /\ A. b e. On_s ( b ( bday ` b ) = ( bday " { y e. On_s | y A. z e. On_s ( z ( bday ` z ) e. ( bday ` a ) ) ) |
| 100 |
|
bdaydm |
|- dom bday = No |
| 101 |
23 100
|
sseqtrri |
|- { x e. On_s | x |
| 102 |
|
funimass4 |
|- ( ( Fun bday /\ { x e. On_s | x ( ( bday " { x e. On_s | x A. z e. { x e. On_s | x |
| 103 |
82 101 102
|
mp2an |
|- ( ( bday " { x e. On_s | x A. z e. { x e. On_s | x |
| 104 |
31
|
ralrab |
|- ( A. z e. { x e. On_s | x A. z e. On_s ( z ( bday ` z ) e. ( bday ` a ) ) ) |
| 105 |
103 104
|
bitri |
|- ( ( bday " { x e. On_s | x A. z e. On_s ( z ( bday ` z ) e. ( bday ` a ) ) ) |
| 106 |
99 105
|
sylibr |
|- ( ( a e. On_s /\ A. b e. On_s ( b ( bday ` b ) = ( bday " { y e. On_s | y ( bday " { x e. On_s | x |
| 107 |
93 106
|
eqssd |
|- ( ( a e. On_s /\ A. b e. On_s ( b ( bday ` b ) = ( bday " { y e. On_s | y ( bday ` a ) = ( bday " { x e. On_s | x |
| 108 |
107
|
ex |
|- ( a e. On_s -> ( A. b e. On_s ( b ( bday ` b ) = ( bday " { y e. On_s | y ( bday ` a ) = ( bday " { x e. On_s | x |
| 109 |
8 13 108
|
onsis |
|- ( A e. On_s -> ( bday ` A ) = ( bday " { x e. On_s | x |