| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
⊢ ( 𝑎 = 𝑏 → ( bday ‘ 𝑎 ) = ( bday ‘ 𝑏 ) ) |
| 2 |
|
breq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝑥 <s 𝑎 ↔ 𝑥 <s 𝑏 ) ) |
| 3 |
2
|
rabbidv |
⊢ ( 𝑎 = 𝑏 → { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } = { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑏 } ) |
| 4 |
|
breq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 <s 𝑏 ↔ 𝑦 <s 𝑏 ) ) |
| 5 |
4
|
cbvrabv |
⊢ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑏 } = { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } |
| 6 |
3 5
|
eqtrdi |
⊢ ( 𝑎 = 𝑏 → { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } = { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) |
| 7 |
6
|
imaeq2d |
⊢ ( 𝑎 = 𝑏 → ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) = ( bday “ { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) ) |
| 8 |
1 7
|
eqeq12d |
⊢ ( 𝑎 = 𝑏 → ( ( bday ‘ 𝑎 ) = ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ↔ ( bday ‘ 𝑏 ) = ( bday “ { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) ) ) |
| 9 |
|
fveq2 |
⊢ ( 𝑎 = 𝐴 → ( bday ‘ 𝑎 ) = ( bday ‘ 𝐴 ) ) |
| 10 |
|
breq2 |
⊢ ( 𝑎 = 𝐴 → ( 𝑥 <s 𝑎 ↔ 𝑥 <s 𝐴 ) ) |
| 11 |
10
|
rabbidv |
⊢ ( 𝑎 = 𝐴 → { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } = { 𝑥 ∈ Ons ∣ 𝑥 <s 𝐴 } ) |
| 12 |
11
|
imaeq2d |
⊢ ( 𝑎 = 𝐴 → ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) = ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝐴 } ) ) |
| 13 |
9 12
|
eqeq12d |
⊢ ( 𝑎 = 𝐴 → ( ( bday ‘ 𝑎 ) = ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ↔ ( bday ‘ 𝐴 ) = ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝐴 } ) ) ) |
| 14 |
|
onscutlt |
⊢ ( 𝑎 ∈ Ons → 𝑎 = ( { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } |s ∅ ) ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝑎 ∈ Ons ∧ ∀ 𝑏 ∈ Ons ( 𝑏 <s 𝑎 → ( bday ‘ 𝑏 ) = ( bday “ { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) ) ) → 𝑎 = ( { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } |s ∅ ) ) |
| 16 |
15
|
fveq2d |
⊢ ( ( 𝑎 ∈ Ons ∧ ∀ 𝑏 ∈ Ons ( 𝑏 <s 𝑎 → ( bday ‘ 𝑏 ) = ( bday “ { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) ) ) → ( bday ‘ 𝑎 ) = ( bday ‘ ( { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } |s ∅ ) ) ) |
| 17 |
|
onsno |
⊢ ( 𝑎 ∈ Ons → 𝑎 ∈ No ) |
| 18 |
|
sltonex |
⊢ ( 𝑎 ∈ No → { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ∈ V ) |
| 19 |
17 18
|
syl |
⊢ ( 𝑎 ∈ Ons → { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ∈ V ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝑎 ∈ Ons ∧ ∀ 𝑏 ∈ Ons ( 𝑏 <s 𝑎 → ( bday ‘ 𝑏 ) = ( bday “ { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) ) ) → { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ∈ V ) |
| 21 |
|
ssrab2 |
⊢ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ⊆ Ons |
| 22 |
|
onssno |
⊢ Ons ⊆ No |
| 23 |
21 22
|
sstri |
⊢ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ⊆ No |
| 24 |
23
|
a1i |
⊢ ( ( 𝑎 ∈ Ons ∧ ∀ 𝑏 ∈ Ons ( 𝑏 <s 𝑎 → ( bday ‘ 𝑏 ) = ( bday “ { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) ) ) → { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ⊆ No ) |
| 25 |
20 24
|
elpwd |
⊢ ( ( 𝑎 ∈ Ons ∧ ∀ 𝑏 ∈ Ons ( 𝑏 <s 𝑎 → ( bday ‘ 𝑏 ) = ( bday “ { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) ) ) → { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ∈ 𝒫 No ) |
| 26 |
|
nulssgt |
⊢ ( { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ∈ 𝒫 No → { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } <<s ∅ ) |
| 27 |
25 26
|
syl |
⊢ ( ( 𝑎 ∈ Ons ∧ ∀ 𝑏 ∈ Ons ( 𝑏 <s 𝑎 → ( bday ‘ 𝑏 ) = ( bday “ { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) ) ) → { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } <<s ∅ ) |
| 28 |
|
bdayfn |
⊢ bday Fn No |
| 29 |
|
fvelimab |
⊢ ( ( bday Fn No ∧ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ⊆ No ) → ( 𝑞 ∈ ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ↔ ∃ 𝑧 ∈ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ( bday ‘ 𝑧 ) = 𝑞 ) ) |
| 30 |
28 23 29
|
mp2an |
⊢ ( 𝑞 ∈ ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ↔ ∃ 𝑧 ∈ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ( bday ‘ 𝑧 ) = 𝑞 ) |
| 31 |
|
breq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 <s 𝑎 ↔ 𝑧 <s 𝑎 ) ) |
| 32 |
31
|
rexrab |
⊢ ( ∃ 𝑧 ∈ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ( bday ‘ 𝑧 ) = 𝑞 ↔ ∃ 𝑧 ∈ Ons ( 𝑧 <s 𝑎 ∧ ( bday ‘ 𝑧 ) = 𝑞 ) ) |
| 33 |
30 32
|
bitri |
⊢ ( 𝑞 ∈ ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ↔ ∃ 𝑧 ∈ Ons ( 𝑧 <s 𝑎 ∧ ( bday ‘ 𝑧 ) = 𝑞 ) ) |
| 34 |
|
breq1 |
⊢ ( 𝑏 = 𝑧 → ( 𝑏 <s 𝑎 ↔ 𝑧 <s 𝑎 ) ) |
| 35 |
|
fveq2 |
⊢ ( 𝑏 = 𝑧 → ( bday ‘ 𝑏 ) = ( bday ‘ 𝑧 ) ) |
| 36 |
|
breq2 |
⊢ ( 𝑏 = 𝑧 → ( 𝑦 <s 𝑏 ↔ 𝑦 <s 𝑧 ) ) |
| 37 |
36
|
rabbidv |
⊢ ( 𝑏 = 𝑧 → { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } = { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑧 } ) |
| 38 |
|
breq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 <s 𝑧 ↔ 𝑦 <s 𝑧 ) ) |
| 39 |
38
|
cbvrabv |
⊢ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑧 } = { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑧 } |
| 40 |
37 39
|
eqtr4di |
⊢ ( 𝑏 = 𝑧 → { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } = { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑧 } ) |
| 41 |
40
|
imaeq2d |
⊢ ( 𝑏 = 𝑧 → ( bday “ { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) = ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑧 } ) ) |
| 42 |
35 41
|
eqeq12d |
⊢ ( 𝑏 = 𝑧 → ( ( bday ‘ 𝑏 ) = ( bday “ { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) ↔ ( bday ‘ 𝑧 ) = ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑧 } ) ) ) |
| 43 |
34 42
|
imbi12d |
⊢ ( 𝑏 = 𝑧 → ( ( 𝑏 <s 𝑎 → ( bday ‘ 𝑏 ) = ( bday “ { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) ) ↔ ( 𝑧 <s 𝑎 → ( bday ‘ 𝑧 ) = ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑧 } ) ) ) ) |
| 44 |
43
|
rspccv |
⊢ ( ∀ 𝑏 ∈ Ons ( 𝑏 <s 𝑎 → ( bday ‘ 𝑏 ) = ( bday “ { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) ) → ( 𝑧 ∈ Ons → ( 𝑧 <s 𝑎 → ( bday ‘ 𝑧 ) = ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑧 } ) ) ) ) |
| 45 |
44
|
imp |
⊢ ( ( ∀ 𝑏 ∈ Ons ( 𝑏 <s 𝑎 → ( bday ‘ 𝑏 ) = ( bday “ { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) ) ∧ 𝑧 ∈ Ons ) → ( 𝑧 <s 𝑎 → ( bday ‘ 𝑧 ) = ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑧 } ) ) ) |
| 46 |
45
|
adantll |
⊢ ( ( ( 𝑎 ∈ Ons ∧ ∀ 𝑏 ∈ Ons ( 𝑏 <s 𝑎 → ( bday ‘ 𝑏 ) = ( bday “ { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) ) ) ∧ 𝑧 ∈ Ons ) → ( 𝑧 <s 𝑎 → ( bday ‘ 𝑧 ) = ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑧 } ) ) ) |
| 47 |
46
|
impr |
⊢ ( ( ( 𝑎 ∈ Ons ∧ ∀ 𝑏 ∈ Ons ( 𝑏 <s 𝑎 → ( bday ‘ 𝑏 ) = ( bday “ { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) ) ) ∧ ( 𝑧 ∈ Ons ∧ 𝑧 <s 𝑎 ) ) → ( bday ‘ 𝑧 ) = ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑧 } ) ) |
| 48 |
|
simplrr |
⊢ ( ( ( ( 𝑎 ∈ Ons ∧ ∀ 𝑏 ∈ Ons ( 𝑏 <s 𝑎 → ( bday ‘ 𝑏 ) = ( bday “ { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) ) ) ∧ ( 𝑧 ∈ Ons ∧ 𝑧 <s 𝑎 ) ) ∧ 𝑥 ∈ Ons ) → 𝑧 <s 𝑎 ) |
| 49 |
|
onsno |
⊢ ( 𝑥 ∈ Ons → 𝑥 ∈ No ) |
| 50 |
49
|
adantl |
⊢ ( ( ( ( 𝑎 ∈ Ons ∧ ∀ 𝑏 ∈ Ons ( 𝑏 <s 𝑎 → ( bday ‘ 𝑏 ) = ( bday “ { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) ) ) ∧ ( 𝑧 ∈ Ons ∧ 𝑧 <s 𝑎 ) ) ∧ 𝑥 ∈ Ons ) → 𝑥 ∈ No ) |
| 51 |
|
simplrl |
⊢ ( ( ( ( 𝑎 ∈ Ons ∧ ∀ 𝑏 ∈ Ons ( 𝑏 <s 𝑎 → ( bday ‘ 𝑏 ) = ( bday “ { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) ) ) ∧ ( 𝑧 ∈ Ons ∧ 𝑧 <s 𝑎 ) ) ∧ 𝑥 ∈ Ons ) → 𝑧 ∈ Ons ) |
| 52 |
|
onsno |
⊢ ( 𝑧 ∈ Ons → 𝑧 ∈ No ) |
| 53 |
51 52
|
syl |
⊢ ( ( ( ( 𝑎 ∈ Ons ∧ ∀ 𝑏 ∈ Ons ( 𝑏 <s 𝑎 → ( bday ‘ 𝑏 ) = ( bday “ { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) ) ) ∧ ( 𝑧 ∈ Ons ∧ 𝑧 <s 𝑎 ) ) ∧ 𝑥 ∈ Ons ) → 𝑧 ∈ No ) |
| 54 |
|
simplll |
⊢ ( ( ( ( 𝑎 ∈ Ons ∧ ∀ 𝑏 ∈ Ons ( 𝑏 <s 𝑎 → ( bday ‘ 𝑏 ) = ( bday “ { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) ) ) ∧ ( 𝑧 ∈ Ons ∧ 𝑧 <s 𝑎 ) ) ∧ 𝑥 ∈ Ons ) → 𝑎 ∈ Ons ) |
| 55 |
54 17
|
syl |
⊢ ( ( ( ( 𝑎 ∈ Ons ∧ ∀ 𝑏 ∈ Ons ( 𝑏 <s 𝑎 → ( bday ‘ 𝑏 ) = ( bday “ { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) ) ) ∧ ( 𝑧 ∈ Ons ∧ 𝑧 <s 𝑎 ) ) ∧ 𝑥 ∈ Ons ) → 𝑎 ∈ No ) |
| 56 |
|
slttr |
⊢ ( ( 𝑥 ∈ No ∧ 𝑧 ∈ No ∧ 𝑎 ∈ No ) → ( ( 𝑥 <s 𝑧 ∧ 𝑧 <s 𝑎 ) → 𝑥 <s 𝑎 ) ) |
| 57 |
50 53 55 56
|
syl3anc |
⊢ ( ( ( ( 𝑎 ∈ Ons ∧ ∀ 𝑏 ∈ Ons ( 𝑏 <s 𝑎 → ( bday ‘ 𝑏 ) = ( bday “ { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) ) ) ∧ ( 𝑧 ∈ Ons ∧ 𝑧 <s 𝑎 ) ) ∧ 𝑥 ∈ Ons ) → ( ( 𝑥 <s 𝑧 ∧ 𝑧 <s 𝑎 ) → 𝑥 <s 𝑎 ) ) |
| 58 |
48 57
|
mpan2d |
⊢ ( ( ( ( 𝑎 ∈ Ons ∧ ∀ 𝑏 ∈ Ons ( 𝑏 <s 𝑎 → ( bday ‘ 𝑏 ) = ( bday “ { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) ) ) ∧ ( 𝑧 ∈ Ons ∧ 𝑧 <s 𝑎 ) ) ∧ 𝑥 ∈ Ons ) → ( 𝑥 <s 𝑧 → 𝑥 <s 𝑎 ) ) |
| 59 |
58
|
ss2rabdv |
⊢ ( ( ( 𝑎 ∈ Ons ∧ ∀ 𝑏 ∈ Ons ( 𝑏 <s 𝑎 → ( bday ‘ 𝑏 ) = ( bday “ { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) ) ) ∧ ( 𝑧 ∈ Ons ∧ 𝑧 <s 𝑎 ) ) → { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑧 } ⊆ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) |
| 60 |
|
imass2 |
⊢ ( { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑧 } ⊆ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } → ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑧 } ) ⊆ ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ) |
| 61 |
59 60
|
syl |
⊢ ( ( ( 𝑎 ∈ Ons ∧ ∀ 𝑏 ∈ Ons ( 𝑏 <s 𝑎 → ( bday ‘ 𝑏 ) = ( bday “ { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) ) ) ∧ ( 𝑧 ∈ Ons ∧ 𝑧 <s 𝑎 ) ) → ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑧 } ) ⊆ ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ) |
| 62 |
47 61
|
eqsstrd |
⊢ ( ( ( 𝑎 ∈ Ons ∧ ∀ 𝑏 ∈ Ons ( 𝑏 <s 𝑎 → ( bday ‘ 𝑏 ) = ( bday “ { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) ) ) ∧ ( 𝑧 ∈ Ons ∧ 𝑧 <s 𝑎 ) ) → ( bday ‘ 𝑧 ) ⊆ ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ) |
| 63 |
62
|
sseld |
⊢ ( ( ( 𝑎 ∈ Ons ∧ ∀ 𝑏 ∈ Ons ( 𝑏 <s 𝑎 → ( bday ‘ 𝑏 ) = ( bday “ { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) ) ) ∧ ( 𝑧 ∈ Ons ∧ 𝑧 <s 𝑎 ) ) → ( 𝑝 ∈ ( bday ‘ 𝑧 ) → 𝑝 ∈ ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ) ) |
| 64 |
|
eleq2 |
⊢ ( ( bday ‘ 𝑧 ) = 𝑞 → ( 𝑝 ∈ ( bday ‘ 𝑧 ) ↔ 𝑝 ∈ 𝑞 ) ) |
| 65 |
64
|
imbi1d |
⊢ ( ( bday ‘ 𝑧 ) = 𝑞 → ( ( 𝑝 ∈ ( bday ‘ 𝑧 ) → 𝑝 ∈ ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ) ↔ ( 𝑝 ∈ 𝑞 → 𝑝 ∈ ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ) ) ) |
| 66 |
65
|
bicomd |
⊢ ( ( bday ‘ 𝑧 ) = 𝑞 → ( ( 𝑝 ∈ 𝑞 → 𝑝 ∈ ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ) ↔ ( 𝑝 ∈ ( bday ‘ 𝑧 ) → 𝑝 ∈ ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ) ) ) |
| 67 |
63 66
|
syl5ibrcom |
⊢ ( ( ( 𝑎 ∈ Ons ∧ ∀ 𝑏 ∈ Ons ( 𝑏 <s 𝑎 → ( bday ‘ 𝑏 ) = ( bday “ { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) ) ) ∧ ( 𝑧 ∈ Ons ∧ 𝑧 <s 𝑎 ) ) → ( ( bday ‘ 𝑧 ) = 𝑞 → ( 𝑝 ∈ 𝑞 → 𝑝 ∈ ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ) ) ) |
| 68 |
67
|
expr |
⊢ ( ( ( 𝑎 ∈ Ons ∧ ∀ 𝑏 ∈ Ons ( 𝑏 <s 𝑎 → ( bday ‘ 𝑏 ) = ( bday “ { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) ) ) ∧ 𝑧 ∈ Ons ) → ( 𝑧 <s 𝑎 → ( ( bday ‘ 𝑧 ) = 𝑞 → ( 𝑝 ∈ 𝑞 → 𝑝 ∈ ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ) ) ) ) |
| 69 |
68
|
impd |
⊢ ( ( ( 𝑎 ∈ Ons ∧ ∀ 𝑏 ∈ Ons ( 𝑏 <s 𝑎 → ( bday ‘ 𝑏 ) = ( bday “ { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) ) ) ∧ 𝑧 ∈ Ons ) → ( ( 𝑧 <s 𝑎 ∧ ( bday ‘ 𝑧 ) = 𝑞 ) → ( 𝑝 ∈ 𝑞 → 𝑝 ∈ ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ) ) ) |
| 70 |
69
|
rexlimdva |
⊢ ( ( 𝑎 ∈ Ons ∧ ∀ 𝑏 ∈ Ons ( 𝑏 <s 𝑎 → ( bday ‘ 𝑏 ) = ( bday “ { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) ) ) → ( ∃ 𝑧 ∈ Ons ( 𝑧 <s 𝑎 ∧ ( bday ‘ 𝑧 ) = 𝑞 ) → ( 𝑝 ∈ 𝑞 → 𝑝 ∈ ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ) ) ) |
| 71 |
33 70
|
biimtrid |
⊢ ( ( 𝑎 ∈ Ons ∧ ∀ 𝑏 ∈ Ons ( 𝑏 <s 𝑎 → ( bday ‘ 𝑏 ) = ( bday “ { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) ) ) → ( 𝑞 ∈ ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) → ( 𝑝 ∈ 𝑞 → 𝑝 ∈ ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ) ) ) |
| 72 |
71
|
impcomd |
⊢ ( ( 𝑎 ∈ Ons ∧ ∀ 𝑏 ∈ Ons ( 𝑏 <s 𝑎 → ( bday ‘ 𝑏 ) = ( bday “ { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) ) ) → ( ( 𝑝 ∈ 𝑞 ∧ 𝑞 ∈ ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ) → 𝑝 ∈ ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ) ) |
| 73 |
72
|
alrimivv |
⊢ ( ( 𝑎 ∈ Ons ∧ ∀ 𝑏 ∈ Ons ( 𝑏 <s 𝑎 → ( bday ‘ 𝑏 ) = ( bday “ { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) ) ) → ∀ 𝑝 ∀ 𝑞 ( ( 𝑝 ∈ 𝑞 ∧ 𝑞 ∈ ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ) → 𝑝 ∈ ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ) ) |
| 74 |
|
imassrn |
⊢ ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ⊆ ran bday |
| 75 |
|
bdayrn |
⊢ ran bday = On |
| 76 |
74 75
|
sseqtri |
⊢ ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ⊆ On |
| 77 |
|
dford5 |
⊢ ( Ord ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ↔ ( ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ⊆ On ∧ Tr ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ) ) |
| 78 |
76 77
|
mpbiran |
⊢ ( Ord ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ↔ Tr ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ) |
| 79 |
|
dftr2 |
⊢ ( Tr ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ↔ ∀ 𝑝 ∀ 𝑞 ( ( 𝑝 ∈ 𝑞 ∧ 𝑞 ∈ ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ) → 𝑝 ∈ ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ) ) |
| 80 |
78 79
|
bitri |
⊢ ( Ord ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ↔ ∀ 𝑝 ∀ 𝑞 ( ( 𝑝 ∈ 𝑞 ∧ 𝑞 ∈ ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ) → 𝑝 ∈ ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ) ) |
| 81 |
73 80
|
sylibr |
⊢ ( ( 𝑎 ∈ Ons ∧ ∀ 𝑏 ∈ Ons ( 𝑏 <s 𝑎 → ( bday ‘ 𝑏 ) = ( bday “ { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) ) ) → Ord ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ) |
| 82 |
|
bdayfun |
⊢ Fun bday |
| 83 |
|
funimaexg |
⊢ ( ( Fun bday ∧ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ∈ V ) → ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ∈ V ) |
| 84 |
82 20 83
|
sylancr |
⊢ ( ( 𝑎 ∈ Ons ∧ ∀ 𝑏 ∈ Ons ( 𝑏 <s 𝑎 → ( bday ‘ 𝑏 ) = ( bday “ { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) ) ) → ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ∈ V ) |
| 85 |
|
elon2 |
⊢ ( ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ∈ On ↔ ( Ord ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ∧ ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ∈ V ) ) |
| 86 |
81 84 85
|
sylanbrc |
⊢ ( ( 𝑎 ∈ Ons ∧ ∀ 𝑏 ∈ Ons ( 𝑏 <s 𝑎 → ( bday ‘ 𝑏 ) = ( bday “ { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) ) ) → ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ∈ On ) |
| 87 |
|
un0 |
⊢ ( { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ∪ ∅ ) = { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } |
| 88 |
87
|
imaeq2i |
⊢ ( bday “ ( { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ∪ ∅ ) ) = ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) |
| 89 |
88
|
eqimssi |
⊢ ( bday “ ( { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ∪ ∅ ) ) ⊆ ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) |
| 90 |
|
scutbdaybnd |
⊢ ( ( { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } <<s ∅ ∧ ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ∈ On ∧ ( bday “ ( { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ∪ ∅ ) ) ⊆ ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ) → ( bday ‘ ( { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } |s ∅ ) ) ⊆ ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ) |
| 91 |
89 90
|
mp3an3 |
⊢ ( ( { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } <<s ∅ ∧ ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ∈ On ) → ( bday ‘ ( { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } |s ∅ ) ) ⊆ ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ) |
| 92 |
27 86 91
|
syl2anc |
⊢ ( ( 𝑎 ∈ Ons ∧ ∀ 𝑏 ∈ Ons ( 𝑏 <s 𝑎 → ( bday ‘ 𝑏 ) = ( bday “ { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) ) ) → ( bday ‘ ( { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } |s ∅ ) ) ⊆ ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ) |
| 93 |
16 92
|
eqsstrd |
⊢ ( ( 𝑎 ∈ Ons ∧ ∀ 𝑏 ∈ Ons ( 𝑏 <s 𝑎 → ( bday ‘ 𝑏 ) = ( bday “ { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) ) ) → ( bday ‘ 𝑎 ) ⊆ ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ) |
| 94 |
|
simpr |
⊢ ( ( ( 𝑎 ∈ Ons ∧ ∀ 𝑏 ∈ Ons ( 𝑏 <s 𝑎 → ( bday ‘ 𝑏 ) = ( bday “ { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) ) ) ∧ 𝑧 ∈ Ons ) → 𝑧 ∈ Ons ) |
| 95 |
|
simpll |
⊢ ( ( ( 𝑎 ∈ Ons ∧ ∀ 𝑏 ∈ Ons ( 𝑏 <s 𝑎 → ( bday ‘ 𝑏 ) = ( bday “ { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) ) ) ∧ 𝑧 ∈ Ons ) → 𝑎 ∈ Ons ) |
| 96 |
|
onslt |
⊢ ( ( 𝑧 ∈ Ons ∧ 𝑎 ∈ Ons ) → ( 𝑧 <s 𝑎 ↔ ( bday ‘ 𝑧 ) ∈ ( bday ‘ 𝑎 ) ) ) |
| 97 |
94 95 96
|
syl2anc |
⊢ ( ( ( 𝑎 ∈ Ons ∧ ∀ 𝑏 ∈ Ons ( 𝑏 <s 𝑎 → ( bday ‘ 𝑏 ) = ( bday “ { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) ) ) ∧ 𝑧 ∈ Ons ) → ( 𝑧 <s 𝑎 ↔ ( bday ‘ 𝑧 ) ∈ ( bday ‘ 𝑎 ) ) ) |
| 98 |
97
|
biimpd |
⊢ ( ( ( 𝑎 ∈ Ons ∧ ∀ 𝑏 ∈ Ons ( 𝑏 <s 𝑎 → ( bday ‘ 𝑏 ) = ( bday “ { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) ) ) ∧ 𝑧 ∈ Ons ) → ( 𝑧 <s 𝑎 → ( bday ‘ 𝑧 ) ∈ ( bday ‘ 𝑎 ) ) ) |
| 99 |
98
|
ralrimiva |
⊢ ( ( 𝑎 ∈ Ons ∧ ∀ 𝑏 ∈ Ons ( 𝑏 <s 𝑎 → ( bday ‘ 𝑏 ) = ( bday “ { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) ) ) → ∀ 𝑧 ∈ Ons ( 𝑧 <s 𝑎 → ( bday ‘ 𝑧 ) ∈ ( bday ‘ 𝑎 ) ) ) |
| 100 |
|
bdaydm |
⊢ dom bday = No |
| 101 |
23 100
|
sseqtrri |
⊢ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ⊆ dom bday |
| 102 |
|
funimass4 |
⊢ ( ( Fun bday ∧ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ⊆ dom bday ) → ( ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ⊆ ( bday ‘ 𝑎 ) ↔ ∀ 𝑧 ∈ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ( bday ‘ 𝑧 ) ∈ ( bday ‘ 𝑎 ) ) ) |
| 103 |
82 101 102
|
mp2an |
⊢ ( ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ⊆ ( bday ‘ 𝑎 ) ↔ ∀ 𝑧 ∈ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ( bday ‘ 𝑧 ) ∈ ( bday ‘ 𝑎 ) ) |
| 104 |
31
|
ralrab |
⊢ ( ∀ 𝑧 ∈ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ( bday ‘ 𝑧 ) ∈ ( bday ‘ 𝑎 ) ↔ ∀ 𝑧 ∈ Ons ( 𝑧 <s 𝑎 → ( bday ‘ 𝑧 ) ∈ ( bday ‘ 𝑎 ) ) ) |
| 105 |
103 104
|
bitri |
⊢ ( ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ⊆ ( bday ‘ 𝑎 ) ↔ ∀ 𝑧 ∈ Ons ( 𝑧 <s 𝑎 → ( bday ‘ 𝑧 ) ∈ ( bday ‘ 𝑎 ) ) ) |
| 106 |
99 105
|
sylibr |
⊢ ( ( 𝑎 ∈ Ons ∧ ∀ 𝑏 ∈ Ons ( 𝑏 <s 𝑎 → ( bday ‘ 𝑏 ) = ( bday “ { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) ) ) → ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ⊆ ( bday ‘ 𝑎 ) ) |
| 107 |
93 106
|
eqssd |
⊢ ( ( 𝑎 ∈ Ons ∧ ∀ 𝑏 ∈ Ons ( 𝑏 <s 𝑎 → ( bday ‘ 𝑏 ) = ( bday “ { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) ) ) → ( bday ‘ 𝑎 ) = ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ) |
| 108 |
107
|
ex |
⊢ ( 𝑎 ∈ Ons → ( ∀ 𝑏 ∈ Ons ( 𝑏 <s 𝑎 → ( bday ‘ 𝑏 ) = ( bday “ { 𝑦 ∈ Ons ∣ 𝑦 <s 𝑏 } ) ) → ( bday ‘ 𝑎 ) = ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝑎 } ) ) ) |
| 109 |
8 13 108
|
onsis |
⊢ ( 𝐴 ∈ Ons → ( bday ‘ 𝐴 ) = ( bday “ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝐴 } ) ) |