Metamath Proof Explorer


Theorem sltonex

Description: The class of ordinals less than any particular surreal is a set. Theorem 14 of Conway p. 27. (Contributed by Scott Fenton, 22-Mar-2025)

Ref Expression
Assertion sltonex ( 𝐴 No → { 𝑥 ∈ Ons𝑥 <s 𝐴 } ∈ V )

Proof

Step Hyp Ref Expression
1 fvexd ( 𝐴 No → ( O ‘ ( bday 𝐴 ) ) ∈ V )
2 sltonold ( 𝐴 No → { 𝑥 ∈ Ons𝑥 <s 𝐴 } ⊆ ( O ‘ ( bday 𝐴 ) ) )
3 1 2 ssexd ( 𝐴 No → { 𝑥 ∈ Ons𝑥 <s 𝐴 } ∈ V )