Metamath Proof Explorer
Description: The class of ordinals less than any particular surreal is a set.
Theorem 14 of Conway p. 27. (Contributed by Scott Fenton, 22-Mar-2025)
|
|
Ref |
Expression |
|
Assertion |
sltonex |
⊢ ( 𝐴 ∈ No → { 𝑥 ∈ Ons ∣ 𝑥 <s 𝐴 } ∈ V ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
fvexd |
⊢ ( 𝐴 ∈ No → ( O ‘ ( bday ‘ 𝐴 ) ) ∈ V ) |
2 |
|
sltonold |
⊢ ( 𝐴 ∈ No → { 𝑥 ∈ Ons ∣ 𝑥 <s 𝐴 } ⊆ ( O ‘ ( bday ‘ 𝐴 ) ) ) |
3 |
1 2
|
ssexd |
⊢ ( 𝐴 ∈ No → { 𝑥 ∈ Ons ∣ 𝑥 <s 𝐴 } ∈ V ) |