| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bdayelon |
⊢ ( bday ‘ 𝑥 ) ∈ On |
| 2 |
1
|
onordi |
⊢ Ord ( bday ‘ 𝑥 ) |
| 3 |
|
bdayelon |
⊢ ( bday ‘ 𝐴 ) ∈ On |
| 4 |
3
|
onordi |
⊢ Ord ( bday ‘ 𝐴 ) |
| 5 |
|
ordtri2or |
⊢ ( ( Ord ( bday ‘ 𝑥 ) ∧ Ord ( bday ‘ 𝐴 ) ) → ( ( bday ‘ 𝑥 ) ∈ ( bday ‘ 𝐴 ) ∨ ( bday ‘ 𝐴 ) ⊆ ( bday ‘ 𝑥 ) ) ) |
| 6 |
2 4 5
|
mp2an |
⊢ ( ( bday ‘ 𝑥 ) ∈ ( bday ‘ 𝐴 ) ∨ ( bday ‘ 𝐴 ) ⊆ ( bday ‘ 𝑥 ) ) |
| 7 |
6
|
a1i |
⊢ ( ( 𝐴 ∈ No ∧ 𝑥 ∈ Ons ∧ 𝑥 <s 𝐴 ) → ( ( bday ‘ 𝑥 ) ∈ ( bday ‘ 𝐴 ) ∨ ( bday ‘ 𝐴 ) ⊆ ( bday ‘ 𝑥 ) ) ) |
| 8 |
|
madeun |
⊢ ( M ‘ ( bday ‘ 𝑥 ) ) = ( ( O ‘ ( bday ‘ 𝑥 ) ) ∪ ( N ‘ ( bday ‘ 𝑥 ) ) ) |
| 9 |
8
|
eleq2i |
⊢ ( 𝐴 ∈ ( M ‘ ( bday ‘ 𝑥 ) ) ↔ 𝐴 ∈ ( ( O ‘ ( bday ‘ 𝑥 ) ) ∪ ( N ‘ ( bday ‘ 𝑥 ) ) ) ) |
| 10 |
|
elun |
⊢ ( 𝐴 ∈ ( ( O ‘ ( bday ‘ 𝑥 ) ) ∪ ( N ‘ ( bday ‘ 𝑥 ) ) ) ↔ ( 𝐴 ∈ ( O ‘ ( bday ‘ 𝑥 ) ) ∨ 𝐴 ∈ ( N ‘ ( bday ‘ 𝑥 ) ) ) ) |
| 11 |
9 10
|
bitri |
⊢ ( 𝐴 ∈ ( M ‘ ( bday ‘ 𝑥 ) ) ↔ ( 𝐴 ∈ ( O ‘ ( bday ‘ 𝑥 ) ) ∨ 𝐴 ∈ ( N ‘ ( bday ‘ 𝑥 ) ) ) ) |
| 12 |
|
lrold |
⊢ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) = ( O ‘ ( bday ‘ 𝑥 ) ) |
| 13 |
12
|
eleq2i |
⊢ ( 𝐴 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ↔ 𝐴 ∈ ( O ‘ ( bday ‘ 𝑥 ) ) ) |
| 14 |
|
elons |
⊢ ( 𝑥 ∈ Ons ↔ ( 𝑥 ∈ No ∧ ( R ‘ 𝑥 ) = ∅ ) ) |
| 15 |
14
|
simprbi |
⊢ ( 𝑥 ∈ Ons → ( R ‘ 𝑥 ) = ∅ ) |
| 16 |
15
|
adantl |
⊢ ( ( 𝐴 ∈ No ∧ 𝑥 ∈ Ons ) → ( R ‘ 𝑥 ) = ∅ ) |
| 17 |
16
|
uneq2d |
⊢ ( ( 𝐴 ∈ No ∧ 𝑥 ∈ Ons ) → ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) = ( ( L ‘ 𝑥 ) ∪ ∅ ) ) |
| 18 |
|
un0 |
⊢ ( ( L ‘ 𝑥 ) ∪ ∅ ) = ( L ‘ 𝑥 ) |
| 19 |
17 18
|
eqtrdi |
⊢ ( ( 𝐴 ∈ No ∧ 𝑥 ∈ Ons ) → ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) = ( L ‘ 𝑥 ) ) |
| 20 |
19
|
eleq2d |
⊢ ( ( 𝐴 ∈ No ∧ 𝑥 ∈ Ons ) → ( 𝐴 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ↔ 𝐴 ∈ ( L ‘ 𝑥 ) ) ) |
| 21 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝑥 ∈ Ons ) ∧ 𝐴 ∈ ( L ‘ 𝑥 ) ) → 𝐴 ∈ No ) |
| 22 |
|
onsno |
⊢ ( 𝑥 ∈ Ons → 𝑥 ∈ No ) |
| 23 |
22
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝑥 ∈ Ons ) ∧ 𝐴 ∈ ( L ‘ 𝑥 ) ) → 𝑥 ∈ No ) |
| 24 |
|
breq1 |
⊢ ( 𝑥𝑂 = 𝐴 → ( 𝑥𝑂 <s 𝑥 ↔ 𝐴 <s 𝑥 ) ) |
| 25 |
|
leftval |
⊢ ( L ‘ 𝑥 ) = { 𝑥𝑂 ∈ ( O ‘ ( bday ‘ 𝑥 ) ) ∣ 𝑥𝑂 <s 𝑥 } |
| 26 |
24 25
|
elrab2 |
⊢ ( 𝐴 ∈ ( L ‘ 𝑥 ) ↔ ( 𝐴 ∈ ( O ‘ ( bday ‘ 𝑥 ) ) ∧ 𝐴 <s 𝑥 ) ) |
| 27 |
26
|
simprbi |
⊢ ( 𝐴 ∈ ( L ‘ 𝑥 ) → 𝐴 <s 𝑥 ) |
| 28 |
27
|
adantl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝑥 ∈ Ons ) ∧ 𝐴 ∈ ( L ‘ 𝑥 ) ) → 𝐴 <s 𝑥 ) |
| 29 |
21 23 28
|
sltled |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝑥 ∈ Ons ) ∧ 𝐴 ∈ ( L ‘ 𝑥 ) ) → 𝐴 ≤s 𝑥 ) |
| 30 |
29
|
ex |
⊢ ( ( 𝐴 ∈ No ∧ 𝑥 ∈ Ons ) → ( 𝐴 ∈ ( L ‘ 𝑥 ) → 𝐴 ≤s 𝑥 ) ) |
| 31 |
20 30
|
sylbid |
⊢ ( ( 𝐴 ∈ No ∧ 𝑥 ∈ Ons ) → ( 𝐴 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) → 𝐴 ≤s 𝑥 ) ) |
| 32 |
13 31
|
biimtrrid |
⊢ ( ( 𝐴 ∈ No ∧ 𝑥 ∈ Ons ) → ( 𝐴 ∈ ( O ‘ ( bday ‘ 𝑥 ) ) → 𝐴 ≤s 𝑥 ) ) |
| 33 |
|
newbday |
⊢ ( ( ( bday ‘ 𝑥 ) ∈ On ∧ 𝐴 ∈ No ) → ( 𝐴 ∈ ( N ‘ ( bday ‘ 𝑥 ) ) ↔ ( bday ‘ 𝐴 ) = ( bday ‘ 𝑥 ) ) ) |
| 34 |
1 33
|
mpan |
⊢ ( 𝐴 ∈ No → ( 𝐴 ∈ ( N ‘ ( bday ‘ 𝑥 ) ) ↔ ( bday ‘ 𝐴 ) = ( bday ‘ 𝑥 ) ) ) |
| 35 |
34
|
adantr |
⊢ ( ( 𝐴 ∈ No ∧ 𝑥 ∈ Ons ) → ( 𝐴 ∈ ( N ‘ ( bday ‘ 𝑥 ) ) ↔ ( bday ‘ 𝐴 ) = ( bday ‘ 𝑥 ) ) ) |
| 36 |
|
leftssold |
⊢ ( L ‘ 𝐴 ) ⊆ ( O ‘ ( bday ‘ 𝐴 ) ) |
| 37 |
|
fveq2 |
⊢ ( ( bday ‘ 𝐴 ) = ( bday ‘ 𝑥 ) → ( O ‘ ( bday ‘ 𝐴 ) ) = ( O ‘ ( bday ‘ 𝑥 ) ) ) |
| 38 |
37
|
adantl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝑥 ∈ Ons ) ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝑥 ) ) → ( O ‘ ( bday ‘ 𝐴 ) ) = ( O ‘ ( bday ‘ 𝑥 ) ) ) |
| 39 |
15
|
uneq2d |
⊢ ( 𝑥 ∈ Ons → ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) = ( ( L ‘ 𝑥 ) ∪ ∅ ) ) |
| 40 |
39 12 18
|
3eqtr3g |
⊢ ( 𝑥 ∈ Ons → ( O ‘ ( bday ‘ 𝑥 ) ) = ( L ‘ 𝑥 ) ) |
| 41 |
40
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝑥 ∈ Ons ) ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝑥 ) ) → ( O ‘ ( bday ‘ 𝑥 ) ) = ( L ‘ 𝑥 ) ) |
| 42 |
38 41
|
eqtr2d |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝑥 ∈ Ons ) ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝑥 ) ) → ( L ‘ 𝑥 ) = ( O ‘ ( bday ‘ 𝐴 ) ) ) |
| 43 |
36 42
|
sseqtrrid |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝑥 ∈ Ons ) ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝑥 ) ) → ( L ‘ 𝐴 ) ⊆ ( L ‘ 𝑥 ) ) |
| 44 |
|
slelss |
⊢ ( ( 𝐴 ∈ No ∧ 𝑥 ∈ No ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝑥 ) ) → ( 𝐴 ≤s 𝑥 ↔ ( L ‘ 𝐴 ) ⊆ ( L ‘ 𝑥 ) ) ) |
| 45 |
22 44
|
syl3an2 |
⊢ ( ( 𝐴 ∈ No ∧ 𝑥 ∈ Ons ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝑥 ) ) → ( 𝐴 ≤s 𝑥 ↔ ( L ‘ 𝐴 ) ⊆ ( L ‘ 𝑥 ) ) ) |
| 46 |
45
|
3expa |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝑥 ∈ Ons ) ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝑥 ) ) → ( 𝐴 ≤s 𝑥 ↔ ( L ‘ 𝐴 ) ⊆ ( L ‘ 𝑥 ) ) ) |
| 47 |
43 46
|
mpbird |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝑥 ∈ Ons ) ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝑥 ) ) → 𝐴 ≤s 𝑥 ) |
| 48 |
47
|
ex |
⊢ ( ( 𝐴 ∈ No ∧ 𝑥 ∈ Ons ) → ( ( bday ‘ 𝐴 ) = ( bday ‘ 𝑥 ) → 𝐴 ≤s 𝑥 ) ) |
| 49 |
35 48
|
sylbid |
⊢ ( ( 𝐴 ∈ No ∧ 𝑥 ∈ Ons ) → ( 𝐴 ∈ ( N ‘ ( bday ‘ 𝑥 ) ) → 𝐴 ≤s 𝑥 ) ) |
| 50 |
32 49
|
jaod |
⊢ ( ( 𝐴 ∈ No ∧ 𝑥 ∈ Ons ) → ( ( 𝐴 ∈ ( O ‘ ( bday ‘ 𝑥 ) ) ∨ 𝐴 ∈ ( N ‘ ( bday ‘ 𝑥 ) ) ) → 𝐴 ≤s 𝑥 ) ) |
| 51 |
11 50
|
biimtrid |
⊢ ( ( 𝐴 ∈ No ∧ 𝑥 ∈ Ons ) → ( 𝐴 ∈ ( M ‘ ( bday ‘ 𝑥 ) ) → 𝐴 ≤s 𝑥 ) ) |
| 52 |
|
madebday |
⊢ ( ( ( bday ‘ 𝑥 ) ∈ On ∧ 𝐴 ∈ No ) → ( 𝐴 ∈ ( M ‘ ( bday ‘ 𝑥 ) ) ↔ ( bday ‘ 𝐴 ) ⊆ ( bday ‘ 𝑥 ) ) ) |
| 53 |
1 52
|
mpan |
⊢ ( 𝐴 ∈ No → ( 𝐴 ∈ ( M ‘ ( bday ‘ 𝑥 ) ) ↔ ( bday ‘ 𝐴 ) ⊆ ( bday ‘ 𝑥 ) ) ) |
| 54 |
53
|
adantr |
⊢ ( ( 𝐴 ∈ No ∧ 𝑥 ∈ Ons ) → ( 𝐴 ∈ ( M ‘ ( bday ‘ 𝑥 ) ) ↔ ( bday ‘ 𝐴 ) ⊆ ( bday ‘ 𝑥 ) ) ) |
| 55 |
|
slenlt |
⊢ ( ( 𝐴 ∈ No ∧ 𝑥 ∈ No ) → ( 𝐴 ≤s 𝑥 ↔ ¬ 𝑥 <s 𝐴 ) ) |
| 56 |
22 55
|
sylan2 |
⊢ ( ( 𝐴 ∈ No ∧ 𝑥 ∈ Ons ) → ( 𝐴 ≤s 𝑥 ↔ ¬ 𝑥 <s 𝐴 ) ) |
| 57 |
51 54 56
|
3imtr3d |
⊢ ( ( 𝐴 ∈ No ∧ 𝑥 ∈ Ons ) → ( ( bday ‘ 𝐴 ) ⊆ ( bday ‘ 𝑥 ) → ¬ 𝑥 <s 𝐴 ) ) |
| 58 |
57
|
con2d |
⊢ ( ( 𝐴 ∈ No ∧ 𝑥 ∈ Ons ) → ( 𝑥 <s 𝐴 → ¬ ( bday ‘ 𝐴 ) ⊆ ( bday ‘ 𝑥 ) ) ) |
| 59 |
58
|
3impia |
⊢ ( ( 𝐴 ∈ No ∧ 𝑥 ∈ Ons ∧ 𝑥 <s 𝐴 ) → ¬ ( bday ‘ 𝐴 ) ⊆ ( bday ‘ 𝑥 ) ) |
| 60 |
7 59
|
olcnd |
⊢ ( ( 𝐴 ∈ No ∧ 𝑥 ∈ Ons ∧ 𝑥 <s 𝐴 ) → ( bday ‘ 𝑥 ) ∈ ( bday ‘ 𝐴 ) ) |
| 61 |
22
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ No ∧ 𝑥 ∈ Ons ∧ 𝑥 <s 𝐴 ) → 𝑥 ∈ No ) |
| 62 |
|
oldbday |
⊢ ( ( ( bday ‘ 𝐴 ) ∈ On ∧ 𝑥 ∈ No ) → ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ↔ ( bday ‘ 𝑥 ) ∈ ( bday ‘ 𝐴 ) ) ) |
| 63 |
3 61 62
|
sylancr |
⊢ ( ( 𝐴 ∈ No ∧ 𝑥 ∈ Ons ∧ 𝑥 <s 𝐴 ) → ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ↔ ( bday ‘ 𝑥 ) ∈ ( bday ‘ 𝐴 ) ) ) |
| 64 |
60 63
|
mpbird |
⊢ ( ( 𝐴 ∈ No ∧ 𝑥 ∈ Ons ∧ 𝑥 <s 𝐴 ) → 𝑥 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ) |
| 65 |
64
|
rabssdv |
⊢ ( 𝐴 ∈ No → { 𝑥 ∈ Ons ∣ 𝑥 <s 𝐴 } ⊆ ( O ‘ ( bday ‘ 𝐴 ) ) ) |