| Step |
Hyp |
Ref |
Expression |
| 1 |
|
madebday |
⊢ ( ( 𝐴 ∈ On ∧ 𝑋 ∈ No ) → ( 𝑋 ∈ ( M ‘ 𝐴 ) ↔ ( bday ‘ 𝑋 ) ⊆ 𝐴 ) ) |
| 2 |
|
oldbday |
⊢ ( ( 𝐴 ∈ On ∧ 𝑋 ∈ No ) → ( 𝑋 ∈ ( O ‘ 𝐴 ) ↔ ( bday ‘ 𝑋 ) ∈ 𝐴 ) ) |
| 3 |
2
|
notbid |
⊢ ( ( 𝐴 ∈ On ∧ 𝑋 ∈ No ) → ( ¬ 𝑋 ∈ ( O ‘ 𝐴 ) ↔ ¬ ( bday ‘ 𝑋 ) ∈ 𝐴 ) ) |
| 4 |
1 3
|
anbi12d |
⊢ ( ( 𝐴 ∈ On ∧ 𝑋 ∈ No ) → ( ( 𝑋 ∈ ( M ‘ 𝐴 ) ∧ ¬ 𝑋 ∈ ( O ‘ 𝐴 ) ) ↔ ( ( bday ‘ 𝑋 ) ⊆ 𝐴 ∧ ¬ ( bday ‘ 𝑋 ) ∈ 𝐴 ) ) ) |
| 5 |
|
newval |
⊢ ( N ‘ 𝐴 ) = ( ( M ‘ 𝐴 ) ∖ ( O ‘ 𝐴 ) ) |
| 6 |
5
|
a1i |
⊢ ( 𝐴 ∈ On → ( N ‘ 𝐴 ) = ( ( M ‘ 𝐴 ) ∖ ( O ‘ 𝐴 ) ) ) |
| 7 |
6
|
eleq2d |
⊢ ( 𝐴 ∈ On → ( 𝑋 ∈ ( N ‘ 𝐴 ) ↔ 𝑋 ∈ ( ( M ‘ 𝐴 ) ∖ ( O ‘ 𝐴 ) ) ) ) |
| 8 |
|
eldif |
⊢ ( 𝑋 ∈ ( ( M ‘ 𝐴 ) ∖ ( O ‘ 𝐴 ) ) ↔ ( 𝑋 ∈ ( M ‘ 𝐴 ) ∧ ¬ 𝑋 ∈ ( O ‘ 𝐴 ) ) ) |
| 9 |
7 8
|
bitrdi |
⊢ ( 𝐴 ∈ On → ( 𝑋 ∈ ( N ‘ 𝐴 ) ↔ ( 𝑋 ∈ ( M ‘ 𝐴 ) ∧ ¬ 𝑋 ∈ ( O ‘ 𝐴 ) ) ) ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝐴 ∈ On ∧ 𝑋 ∈ No ) → ( 𝑋 ∈ ( N ‘ 𝐴 ) ↔ ( 𝑋 ∈ ( M ‘ 𝐴 ) ∧ ¬ 𝑋 ∈ ( O ‘ 𝐴 ) ) ) ) |
| 11 |
|
bdayelon |
⊢ ( bday ‘ 𝑋 ) ∈ On |
| 12 |
11
|
onordi |
⊢ Ord ( bday ‘ 𝑋 ) |
| 13 |
|
eloni |
⊢ ( 𝐴 ∈ On → Ord 𝐴 ) |
| 14 |
|
ordtri4 |
⊢ ( ( Ord ( bday ‘ 𝑋 ) ∧ Ord 𝐴 ) → ( ( bday ‘ 𝑋 ) = 𝐴 ↔ ( ( bday ‘ 𝑋 ) ⊆ 𝐴 ∧ ¬ ( bday ‘ 𝑋 ) ∈ 𝐴 ) ) ) |
| 15 |
12 13 14
|
sylancr |
⊢ ( 𝐴 ∈ On → ( ( bday ‘ 𝑋 ) = 𝐴 ↔ ( ( bday ‘ 𝑋 ) ⊆ 𝐴 ∧ ¬ ( bday ‘ 𝑋 ) ∈ 𝐴 ) ) ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝐴 ∈ On ∧ 𝑋 ∈ No ) → ( ( bday ‘ 𝑋 ) = 𝐴 ↔ ( ( bday ‘ 𝑋 ) ⊆ 𝐴 ∧ ¬ ( bday ‘ 𝑋 ) ∈ 𝐴 ) ) ) |
| 17 |
4 10 16
|
3bitr4d |
⊢ ( ( 𝐴 ∈ On ∧ 𝑋 ∈ No ) → ( 𝑋 ∈ ( N ‘ 𝐴 ) ↔ ( bday ‘ 𝑋 ) = 𝐴 ) ) |