| Step |
Hyp |
Ref |
Expression |
| 1 |
|
madebday |
|- ( ( A e. On /\ X e. No ) -> ( X e. ( _Made ` A ) <-> ( bday ` X ) C_ A ) ) |
| 2 |
|
oldbday |
|- ( ( A e. On /\ X e. No ) -> ( X e. ( _Old ` A ) <-> ( bday ` X ) e. A ) ) |
| 3 |
2
|
notbid |
|- ( ( A e. On /\ X e. No ) -> ( -. X e. ( _Old ` A ) <-> -. ( bday ` X ) e. A ) ) |
| 4 |
1 3
|
anbi12d |
|- ( ( A e. On /\ X e. No ) -> ( ( X e. ( _Made ` A ) /\ -. X e. ( _Old ` A ) ) <-> ( ( bday ` X ) C_ A /\ -. ( bday ` X ) e. A ) ) ) |
| 5 |
|
newval |
|- ( _New ` A ) = ( ( _Made ` A ) \ ( _Old ` A ) ) |
| 6 |
5
|
a1i |
|- ( A e. On -> ( _New ` A ) = ( ( _Made ` A ) \ ( _Old ` A ) ) ) |
| 7 |
6
|
eleq2d |
|- ( A e. On -> ( X e. ( _New ` A ) <-> X e. ( ( _Made ` A ) \ ( _Old ` A ) ) ) ) |
| 8 |
|
eldif |
|- ( X e. ( ( _Made ` A ) \ ( _Old ` A ) ) <-> ( X e. ( _Made ` A ) /\ -. X e. ( _Old ` A ) ) ) |
| 9 |
7 8
|
bitrdi |
|- ( A e. On -> ( X e. ( _New ` A ) <-> ( X e. ( _Made ` A ) /\ -. X e. ( _Old ` A ) ) ) ) |
| 10 |
9
|
adantr |
|- ( ( A e. On /\ X e. No ) -> ( X e. ( _New ` A ) <-> ( X e. ( _Made ` A ) /\ -. X e. ( _Old ` A ) ) ) ) |
| 11 |
|
bdayelon |
|- ( bday ` X ) e. On |
| 12 |
11
|
onordi |
|- Ord ( bday ` X ) |
| 13 |
|
eloni |
|- ( A e. On -> Ord A ) |
| 14 |
|
ordtri4 |
|- ( ( Ord ( bday ` X ) /\ Ord A ) -> ( ( bday ` X ) = A <-> ( ( bday ` X ) C_ A /\ -. ( bday ` X ) e. A ) ) ) |
| 15 |
12 13 14
|
sylancr |
|- ( A e. On -> ( ( bday ` X ) = A <-> ( ( bday ` X ) C_ A /\ -. ( bday ` X ) e. A ) ) ) |
| 16 |
15
|
adantr |
|- ( ( A e. On /\ X e. No ) -> ( ( bday ` X ) = A <-> ( ( bday ` X ) C_ A /\ -. ( bday ` X ) e. A ) ) ) |
| 17 |
4 10 16
|
3bitr4d |
|- ( ( A e. On /\ X e. No ) -> ( X e. ( _New ` A ) <-> ( bday ` X ) = A ) ) |