Description: A trichotomy law for ordinals. (Contributed by NM, 1-Nov-2003) (Proof shortened by Andrew Salmon, 25-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordtri4 | |- ( ( Ord A /\ Ord B ) -> ( A = B <-> ( A C_ B /\ -. A e. B ) ) )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqss | |- ( A = B <-> ( A C_ B /\ B C_ A ) )  | 
						|
| 2 | ordtri1 | |- ( ( Ord B /\ Ord A ) -> ( B C_ A <-> -. A e. B ) )  | 
						|
| 3 | 2 | ancoms | |- ( ( Ord A /\ Ord B ) -> ( B C_ A <-> -. A e. B ) )  | 
						
| 4 | 3 | anbi2d | |- ( ( Ord A /\ Ord B ) -> ( ( A C_ B /\ B C_ A ) <-> ( A C_ B /\ -. A e. B ) ) )  | 
						
| 5 | 1 4 | bitrid | |- ( ( Ord A /\ Ord B ) -> ( A = B <-> ( A C_ B /\ -. A e. B ) ) )  |