Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|- ( x = A -> ( _M ` x ) = ( _M ` A ) ) |
2 |
|
fveq2 |
|- ( x = A -> ( _Old ` x ) = ( _Old ` A ) ) |
3 |
1 2
|
difeq12d |
|- ( x = A -> ( ( _M ` x ) \ ( _Old ` x ) ) = ( ( _M ` A ) \ ( _Old ` A ) ) ) |
4 |
|
df-new |
|- _N = ( x e. On |-> ( ( _M ` x ) \ ( _Old ` x ) ) ) |
5 |
|
fvex |
|- ( _M ` A ) e. _V |
6 |
5
|
difexi |
|- ( ( _M ` A ) \ ( _Old ` A ) ) e. _V |
7 |
3 4 6
|
fvmpt |
|- ( A e. On -> ( _N ` A ) = ( ( _M ` A ) \ ( _Old ` A ) ) ) |
8 |
4
|
fvmptndm |
|- ( -. A e. On -> ( _N ` A ) = (/) ) |
9 |
|
df-made |
|- _M = recs ( ( f e. _V |-> ( |s " ( ~P U. ran f X. ~P U. ran f ) ) ) ) |
10 |
9
|
tfr1 |
|- _M Fn On |
11 |
10
|
fndmi |
|- dom _M = On |
12 |
11
|
eleq2i |
|- ( A e. dom _M <-> A e. On ) |
13 |
|
ndmfv |
|- ( -. A e. dom _M -> ( _M ` A ) = (/) ) |
14 |
12 13
|
sylnbir |
|- ( -. A e. On -> ( _M ` A ) = (/) ) |
15 |
14
|
difeq1d |
|- ( -. A e. On -> ( ( _M ` A ) \ ( _Old ` A ) ) = ( (/) \ ( _Old ` A ) ) ) |
16 |
|
0dif |
|- ( (/) \ ( _Old ` A ) ) = (/) |
17 |
15 16
|
eqtrdi |
|- ( -. A e. On -> ( ( _M ` A ) \ ( _Old ` A ) ) = (/) ) |
18 |
8 17
|
eqtr4d |
|- ( -. A e. On -> ( _N ` A ) = ( ( _M ` A ) \ ( _Old ` A ) ) ) |
19 |
7 18
|
pm2.61i |
|- ( _N ` A ) = ( ( _M ` A ) \ ( _Old ` A ) ) |