Metamath Proof Explorer


Theorem newval

Description: The value of the new options function. (Contributed by Scott Fenton, 9-Oct-2024)

Ref Expression
Assertion newval
|- ( _N ` A ) = ( ( _M ` A ) \ ( _Old ` A ) )

Proof

Step Hyp Ref Expression
1 fveq2
 |-  ( x = A -> ( _M ` x ) = ( _M ` A ) )
2 fveq2
 |-  ( x = A -> ( _Old ` x ) = ( _Old ` A ) )
3 1 2 difeq12d
 |-  ( x = A -> ( ( _M ` x ) \ ( _Old ` x ) ) = ( ( _M ` A ) \ ( _Old ` A ) ) )
4 df-new
 |-  _N = ( x e. On |-> ( ( _M ` x ) \ ( _Old ` x ) ) )
5 fvex
 |-  ( _M ` A ) e. _V
6 5 difexi
 |-  ( ( _M ` A ) \ ( _Old ` A ) ) e. _V
7 3 4 6 fvmpt
 |-  ( A e. On -> ( _N ` A ) = ( ( _M ` A ) \ ( _Old ` A ) ) )
8 4 fvmptndm
 |-  ( -. A e. On -> ( _N ` A ) = (/) )
9 df-made
 |-  _M = recs ( ( f e. _V |-> ( |s " ( ~P U. ran f X. ~P U. ran f ) ) ) )
10 9 tfr1
 |-  _M Fn On
11 10 fndmi
 |-  dom _M = On
12 11 eleq2i
 |-  ( A e. dom _M <-> A e. On )
13 ndmfv
 |-  ( -. A e. dom _M -> ( _M ` A ) = (/) )
14 12 13 sylnbir
 |-  ( -. A e. On -> ( _M ` A ) = (/) )
15 14 difeq1d
 |-  ( -. A e. On -> ( ( _M ` A ) \ ( _Old ` A ) ) = ( (/) \ ( _Old ` A ) ) )
16 0dif
 |-  ( (/) \ ( _Old ` A ) ) = (/)
17 15 16 eqtrdi
 |-  ( -. A e. On -> ( ( _M ` A ) \ ( _Old ` A ) ) = (/) )
18 8 17 eqtr4d
 |-  ( -. A e. On -> ( _N ` A ) = ( ( _M ` A ) \ ( _Old ` A ) ) )
19 7 18 pm2.61i
 |-  ( _N ` A ) = ( ( _M ` A ) \ ( _Old ` A ) )