Metamath Proof Explorer


Theorem newval

Description: The value of the new options function. (Contributed by Scott Fenton, 9-Oct-2024)

Ref Expression
Assertion newval ( N ‘ 𝐴 ) = ( ( M ‘ 𝐴 ) ∖ ( O ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 fveq2 ( 𝑥 = 𝐴 → ( M ‘ 𝑥 ) = ( M ‘ 𝐴 ) )
2 fveq2 ( 𝑥 = 𝐴 → ( O ‘ 𝑥 ) = ( O ‘ 𝐴 ) )
3 1 2 difeq12d ( 𝑥 = 𝐴 → ( ( M ‘ 𝑥 ) ∖ ( O ‘ 𝑥 ) ) = ( ( M ‘ 𝐴 ) ∖ ( O ‘ 𝐴 ) ) )
4 df-new N = ( 𝑥 ∈ On ↦ ( ( M ‘ 𝑥 ) ∖ ( O ‘ 𝑥 ) ) )
5 fvex ( M ‘ 𝐴 ) ∈ V
6 5 difexi ( ( M ‘ 𝐴 ) ∖ ( O ‘ 𝐴 ) ) ∈ V
7 3 4 6 fvmpt ( 𝐴 ∈ On → ( N ‘ 𝐴 ) = ( ( M ‘ 𝐴 ) ∖ ( O ‘ 𝐴 ) ) )
8 4 fvmptndm ( ¬ 𝐴 ∈ On → ( N ‘ 𝐴 ) = ∅ )
9 df-made M = recs ( ( 𝑓 ∈ V ↦ ( |s “ ( 𝒫 ran 𝑓 × 𝒫 ran 𝑓 ) ) ) )
10 9 tfr1 M Fn On
11 10 fndmi dom M = On
12 11 eleq2i ( 𝐴 ∈ dom M ↔ 𝐴 ∈ On )
13 ndmfv ( ¬ 𝐴 ∈ dom M → ( M ‘ 𝐴 ) = ∅ )
14 12 13 sylnbir ( ¬ 𝐴 ∈ On → ( M ‘ 𝐴 ) = ∅ )
15 14 difeq1d ( ¬ 𝐴 ∈ On → ( ( M ‘ 𝐴 ) ∖ ( O ‘ 𝐴 ) ) = ( ∅ ∖ ( O ‘ 𝐴 ) ) )
16 0dif ( ∅ ∖ ( O ‘ 𝐴 ) ) = ∅
17 15 16 eqtrdi ( ¬ 𝐴 ∈ On → ( ( M ‘ 𝐴 ) ∖ ( O ‘ 𝐴 ) ) = ∅ )
18 8 17 eqtr4d ( ¬ 𝐴 ∈ On → ( N ‘ 𝐴 ) = ( ( M ‘ 𝐴 ) ∖ ( O ‘ 𝐴 ) ) )
19 7 18 pm2.61i ( N ‘ 𝐴 ) = ( ( M ‘ 𝐴 ) ∖ ( O ‘ 𝐴 ) )