Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( M ‘ 𝑥 ) = ( M ‘ 𝐴 ) ) |
2 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( O ‘ 𝑥 ) = ( O ‘ 𝐴 ) ) |
3 |
1 2
|
difeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( M ‘ 𝑥 ) ∖ ( O ‘ 𝑥 ) ) = ( ( M ‘ 𝐴 ) ∖ ( O ‘ 𝐴 ) ) ) |
4 |
|
df-new |
⊢ N = ( 𝑥 ∈ On ↦ ( ( M ‘ 𝑥 ) ∖ ( O ‘ 𝑥 ) ) ) |
5 |
|
fvex |
⊢ ( M ‘ 𝐴 ) ∈ V |
6 |
5
|
difexi |
⊢ ( ( M ‘ 𝐴 ) ∖ ( O ‘ 𝐴 ) ) ∈ V |
7 |
3 4 6
|
fvmpt |
⊢ ( 𝐴 ∈ On → ( N ‘ 𝐴 ) = ( ( M ‘ 𝐴 ) ∖ ( O ‘ 𝐴 ) ) ) |
8 |
4
|
fvmptndm |
⊢ ( ¬ 𝐴 ∈ On → ( N ‘ 𝐴 ) = ∅ ) |
9 |
|
df-made |
⊢ M = recs ( ( 𝑓 ∈ V ↦ ( |s “ ( 𝒫 ∪ ran 𝑓 × 𝒫 ∪ ran 𝑓 ) ) ) ) |
10 |
9
|
tfr1 |
⊢ M Fn On |
11 |
10
|
fndmi |
⊢ dom M = On |
12 |
11
|
eleq2i |
⊢ ( 𝐴 ∈ dom M ↔ 𝐴 ∈ On ) |
13 |
|
ndmfv |
⊢ ( ¬ 𝐴 ∈ dom M → ( M ‘ 𝐴 ) = ∅ ) |
14 |
12 13
|
sylnbir |
⊢ ( ¬ 𝐴 ∈ On → ( M ‘ 𝐴 ) = ∅ ) |
15 |
14
|
difeq1d |
⊢ ( ¬ 𝐴 ∈ On → ( ( M ‘ 𝐴 ) ∖ ( O ‘ 𝐴 ) ) = ( ∅ ∖ ( O ‘ 𝐴 ) ) ) |
16 |
|
0dif |
⊢ ( ∅ ∖ ( O ‘ 𝐴 ) ) = ∅ |
17 |
15 16
|
eqtrdi |
⊢ ( ¬ 𝐴 ∈ On → ( ( M ‘ 𝐴 ) ∖ ( O ‘ 𝐴 ) ) = ∅ ) |
18 |
8 17
|
eqtr4d |
⊢ ( ¬ 𝐴 ∈ On → ( N ‘ 𝐴 ) = ( ( M ‘ 𝐴 ) ∖ ( O ‘ 𝐴 ) ) ) |
19 |
7 18
|
pm2.61i |
⊢ ( N ‘ 𝐴 ) = ( ( M ‘ 𝐴 ) ∖ ( O ‘ 𝐴 ) ) |