Step |
Hyp |
Ref |
Expression |
1 |
|
df-made |
|- _M = recs ( ( x e. _V |-> ( |s " ( ~P U. ran x X. ~P U. ran x ) ) ) ) |
2 |
1
|
tfr1 |
|- _M Fn On |
3 |
|
madeval2 |
|- ( x e. On -> ( _M ` x ) = { y e. No | E. z e. ~P U. ( _M " x ) E. w e. ~P U. ( _M " x ) ( z < |
4 |
|
ssrab2 |
|- { y e. No | E. z e. ~P U. ( _M " x ) E. w e. ~P U. ( _M " x ) ( z < |
5 |
3 4
|
eqsstrdi |
|- ( x e. On -> ( _M ` x ) C_ No ) |
6 |
|
sseq1 |
|- ( y = ( _M ` x ) -> ( y C_ No <-> ( _M ` x ) C_ No ) ) |
7 |
5 6
|
syl5ibrcom |
|- ( x e. On -> ( y = ( _M ` x ) -> y C_ No ) ) |
8 |
7
|
rexlimiv |
|- ( E. x e. On y = ( _M ` x ) -> y C_ No ) |
9 |
|
vex |
|- y e. _V |
10 |
|
eqeq1 |
|- ( z = y -> ( z = ( _M ` x ) <-> y = ( _M ` x ) ) ) |
11 |
10
|
rexbidv |
|- ( z = y -> ( E. x e. On z = ( _M ` x ) <-> E. x e. On y = ( _M ` x ) ) ) |
12 |
|
fnrnfv |
|- ( _M Fn On -> ran _M = { z | E. x e. On z = ( _M ` x ) } ) |
13 |
2 12
|
ax-mp |
|- ran _M = { z | E. x e. On z = ( _M ` x ) } |
14 |
9 11 13
|
elab2 |
|- ( y e. ran _M <-> E. x e. On y = ( _M ` x ) ) |
15 |
|
velpw |
|- ( y e. ~P No <-> y C_ No ) |
16 |
8 14 15
|
3imtr4i |
|- ( y e. ran _M -> y e. ~P No ) |
17 |
16
|
ssriv |
|- ran _M C_ ~P No |
18 |
|
df-f |
|- ( _M : On --> ~P No <-> ( _M Fn On /\ ran _M C_ ~P No ) ) |
19 |
2 17 18
|
mpbir2an |
|- _M : On --> ~P No |