Metamath Proof Explorer


Theorem madef

Description: The made function is a function from ordinals to sets of surreals. (Contributed by Scott Fenton, 6-Aug-2024)

Ref Expression
Assertion madef
|- _M : On --> ~P No

Proof

Step Hyp Ref Expression
1 df-made
 |-  _M = recs ( ( x e. _V |-> ( |s " ( ~P U. ran x X. ~P U. ran x ) ) ) )
2 1 tfr1
 |-  _M Fn On
3 madeval2
 |-  ( x e. On -> ( _M ` x ) = { y e. No | E. z e. ~P U. ( _M " x ) E. w e. ~P U. ( _M " x ) ( z <
4 ssrab2
 |-  { y e. No | E. z e. ~P U. ( _M " x ) E. w e. ~P U. ( _M " x ) ( z <
5 3 4 eqsstrdi
 |-  ( x e. On -> ( _M ` x ) C_ No )
6 sseq1
 |-  ( y = ( _M ` x ) -> ( y C_ No <-> ( _M ` x ) C_ No ) )
7 5 6 syl5ibrcom
 |-  ( x e. On -> ( y = ( _M ` x ) -> y C_ No ) )
8 7 rexlimiv
 |-  ( E. x e. On y = ( _M ` x ) -> y C_ No )
9 vex
 |-  y e. _V
10 eqeq1
 |-  ( z = y -> ( z = ( _M ` x ) <-> y = ( _M ` x ) ) )
11 10 rexbidv
 |-  ( z = y -> ( E. x e. On z = ( _M ` x ) <-> E. x e. On y = ( _M ` x ) ) )
12 fnrnfv
 |-  ( _M Fn On -> ran _M = { z | E. x e. On z = ( _M ` x ) } )
13 2 12 ax-mp
 |-  ran _M = { z | E. x e. On z = ( _M ` x ) }
14 9 11 13 elab2
 |-  ( y e. ran _M <-> E. x e. On y = ( _M ` x ) )
15 velpw
 |-  ( y e. ~P No <-> y C_ No )
16 8 14 15 3imtr4i
 |-  ( y e. ran _M -> y e. ~P No )
17 16 ssriv
 |-  ran _M C_ ~P No
18 df-f
 |-  ( _M : On --> ~P No <-> ( _M Fn On /\ ran _M C_ ~P No ) )
19 2 17 18 mpbir2an
 |-  _M : On --> ~P No