Metamath Proof Explorer


Theorem madef

Description: The made function is a function from ordinals to sets of surreals. (Contributed by Scott Fenton, 6-Aug-2024)

Ref Expression
Assertion madef M : On 𝒫 No

Proof

Step Hyp Ref Expression
1 df-made M = recs x V | s 𝒫 ran x × 𝒫 ran x
2 1 tfr1 M Fn On
3 madeval2 x On M x = y No | z 𝒫 M x w 𝒫 M x z s w z | s w = y
4 ssrab2 y No | z 𝒫 M x w 𝒫 M x z s w z | s w = y No
5 3 4 eqsstrdi x On M x No
6 sseq1 y = M x y No M x No
7 5 6 syl5ibrcom x On y = M x y No
8 7 rexlimiv x On y = M x y No
9 vex y V
10 eqeq1 z = y z = M x y = M x
11 10 rexbidv z = y x On z = M x x On y = M x
12 fnrnfv M Fn On ran M = z | x On z = M x
13 2 12 ax-mp ran M = z | x On z = M x
14 9 11 13 elab2 y ran M x On y = M x
15 velpw y 𝒫 No y No
16 8 14 15 3imtr4i y ran M y 𝒫 No
17 16 ssriv ran M 𝒫 No
18 df-f M : On 𝒫 No M Fn On ran M 𝒫 No
19 2 17 18 mpbir2an M : On 𝒫 No