Metamath Proof Explorer


Theorem madeval2

Description: Alternative characterization of the made by function. (Contributed by Scott Fenton, 17-Dec-2021)

Ref Expression
Assertion madeval2 A On M A = x No | a 𝒫 M A b 𝒫 M A a s b a | s b = x

Proof

Step Hyp Ref Expression
1 madeval A On M A = | s 𝒫 M A × 𝒫 M A
2 scutcl a s b a | s b No
3 eleq1 a | s b = x a | s b No x No
4 3 biimpd a | s b = x a | s b No x No
5 2 4 mpan9 a s b a | s b = x x No
6 5 rexlimivw b 𝒫 M A a s b a | s b = x x No
7 6 rexlimivw a 𝒫 M A b 𝒫 M A a s b a | s b = x x No
8 7 pm4.71ri a 𝒫 M A b 𝒫 M A a s b a | s b = x x No a 𝒫 M A b 𝒫 M A a s b a | s b = x
9 8 abbii x | a 𝒫 M A b 𝒫 M A a s b a | s b = x = x | x No a 𝒫 M A b 𝒫 M A a s b a | s b = x
10 eleq1 y = a b y s a b s
11 breq1 y = a b y | s x a b | s x
12 10 11 anbi12d y = a b y s y | s x a b s a b | s x
13 12 rexxp y 𝒫 M A × 𝒫 M A y s y | s x a 𝒫 M A b 𝒫 M A a b s a b | s x
14 imaindm | s 𝒫 M A × 𝒫 M A = | s 𝒫 M A × 𝒫 M A dom | s
15 dmscut dom | s = s
16 15 ineq2i 𝒫 M A × 𝒫 M A dom | s = 𝒫 M A × 𝒫 M A s
17 16 imaeq2i | s 𝒫 M A × 𝒫 M A dom | s = | s 𝒫 M A × 𝒫 M A s
18 14 17 eqtri | s 𝒫 M A × 𝒫 M A = | s 𝒫 M A × 𝒫 M A s
19 18 eleq2i x | s 𝒫 M A × 𝒫 M A x | s 𝒫 M A × 𝒫 M A s
20 vex x V
21 20 elima x | s 𝒫 M A × 𝒫 M A s y 𝒫 M A × 𝒫 M A s y | s x
22 elin y 𝒫 M A × 𝒫 M A s y 𝒫 M A × 𝒫 M A y s
23 22 anbi1i y 𝒫 M A × 𝒫 M A s y | s x y 𝒫 M A × 𝒫 M A y s y | s x
24 anass y 𝒫 M A × 𝒫 M A y s y | s x y 𝒫 M A × 𝒫 M A y s y | s x
25 23 24 bitri y 𝒫 M A × 𝒫 M A s y | s x y 𝒫 M A × 𝒫 M A y s y | s x
26 25 rexbii2 y 𝒫 M A × 𝒫 M A s y | s x y 𝒫 M A × 𝒫 M A y s y | s x
27 19 21 26 3bitri x | s 𝒫 M A × 𝒫 M A y 𝒫 M A × 𝒫 M A y s y | s x
28 df-br a s b a b s
29 28 anbi1i a s b a | s b = x a b s a | s b = x
30 df-ov a | s b = | s a b
31 30 eqeq1i a | s b = x | s a b = x
32 scutf | s : s No
33 ffn | s : s No | s Fn s
34 32 33 ax-mp | s Fn s
35 fnbrfvb | s Fn s a b s | s a b = x a b | s x
36 34 35 mpan a b s | s a b = x a b | s x
37 31 36 syl5bb a b s a | s b = x a b | s x
38 37 pm5.32i a b s a | s b = x a b s a b | s x
39 29 38 bitri a s b a | s b = x a b s a b | s x
40 39 2rexbii a 𝒫 M A b 𝒫 M A a s b a | s b = x a 𝒫 M A b 𝒫 M A a b s a b | s x
41 13 27 40 3bitr4i x | s 𝒫 M A × 𝒫 M A a 𝒫 M A b 𝒫 M A a s b a | s b = x
42 41 abbi2i | s 𝒫 M A × 𝒫 M A = x | a 𝒫 M A b 𝒫 M A a s b a | s b = x
43 df-rab x No | a 𝒫 M A b 𝒫 M A a s b a | s b = x = x | x No a 𝒫 M A b 𝒫 M A a s b a | s b = x
44 9 42 43 3eqtr4i | s 𝒫 M A × 𝒫 M A = x No | a 𝒫 M A b 𝒫 M A a s b a | s b = x
45 1 44 eqtrdi A On M A = x No | a 𝒫 M A b 𝒫 M A a s b a | s b = x