Metamath Proof Explorer


Theorem imaindm

Description: The image is unaffected by intersection with the domain. (Contributed by Scott Fenton, 17-Dec-2021)

Ref Expression
Assertion imaindm RA=RAdomR

Proof

Step Hyp Ref Expression
1 vex yV
2 vex xV
3 1 2 breldm yRxydomR
4 3 pm4.71ri yRxydomRyRx
5 4 rexbii yAyRxyAydomRyRx
6 rexin yAdomRyRxyAydomRyRx
7 5 6 bitr4i yAyRxyAdomRyRx
8 2 elima xRAyAyRx
9 2 elima xRAdomRyAdomRyRx
10 7 8 9 3bitr4i xRAxRAdomR
11 10 eqriv RA=RAdomR