Metamath Proof Explorer


Theorem scutf

Description: Functionality statement for the surreal cut operator. (Contributed by Scott Fenton, 15-Dec-2021)

Ref Expression
Assertion scutf | s : s No

Proof

Step Hyp Ref Expression
1 df-scut | s = a 𝒫 No , b s a ι x y No | a s y y s b | bday x = bday y No | a s y y s b
2 1 mpofun Fun | s
3 dmscut dom | s = s
4 df-fn | s Fn s Fun | s dom | s = s
5 2 3 4 mpbir2an | s Fn s
6 1 rnmpo ran | s = z | a 𝒫 No b s a z = ι x y No | a s y y s b | bday x = bday y No | a s y y s b
7 vex a V
8 vex b V
9 7 8 elimasn b s a a b s
10 df-br a s b a b s
11 9 10 bitr4i b s a a s b
12 scutval a s b a | s b = ι x y No | a s y y s b | bday x = bday y No | a s y y s b
13 scutcl a s b a | s b No
14 12 13 eqeltrrd a s b ι x y No | a s y y s b | bday x = bday y No | a s y y s b No
15 11 14 sylbi b s a ι x y No | a s y y s b | bday x = bday y No | a s y y s b No
16 eleq1a ι x y No | a s y y s b | bday x = bday y No | a s y y s b No z = ι x y No | a s y y s b | bday x = bday y No | a s y y s b z No
17 15 16 syl b s a z = ι x y No | a s y y s b | bday x = bday y No | a s y y s b z No
18 17 adantl a 𝒫 No b s a z = ι x y No | a s y y s b | bday x = bday y No | a s y y s b z No
19 18 rexlimivv a 𝒫 No b s a z = ι x y No | a s y y s b | bday x = bday y No | a s y y s b z No
20 19 abssi z | a 𝒫 No b s a z = ι x y No | a s y y s b | bday x = bday y No | a s y y s b No
21 6 20 eqsstri ran | s No
22 df-f | s : s No | s Fn s ran | s No
23 5 21 22 mpbir2an | s : s No