Metamath Proof Explorer


Definition df-scut

Description: Define the cut operator on surreal numbers. This operator, which Conway takes as the primitive operator over surreals, picks the surreal lying between two sets of surreals of minimal birthday. Definition from Gonshor p. 7. (Contributed by Scott Fenton, 7-Dec-2021)

Ref Expression
Assertion df-scut | s = a 𝒫 No , b s a ι x y No | a s y y s b | bday x = bday y No | a s y y s b

Detailed syntax breakdown

Step Hyp Ref Expression
0 cscut class | s
1 va setvar a
2 csur class No
3 2 cpw class 𝒫 No
4 vb setvar b
5 csslt class s
6 1 cv setvar a
7 6 csn class a
8 5 7 cima class s a
9 vx setvar x
10 vy setvar y
11 10 cv setvar y
12 11 csn class y
13 6 12 5 wbr wff a s y
14 4 cv setvar b
15 12 14 5 wbr wff y s b
16 13 15 wa wff a s y y s b
17 16 10 2 crab class y No | a s y y s b
18 cbday class bday
19 9 cv setvar x
20 19 18 cfv class bday x
21 18 17 cima class bday y No | a s y y s b
22 21 cint class bday y No | a s y y s b
23 20 22 wceq wff bday x = bday y No | a s y y s b
24 23 9 17 crio class ι x y No | a s y y s b | bday x = bday y No | a s y y s b
25 1 4 3 8 24 cmpo class a 𝒫 No , b s a ι x y No | a s y y s b | bday x = bday y No | a s y y s b
26 0 25 wceq wff | s = a 𝒫 No , b s a ι x y No | a s y y s b | bday x = bday y No | a s y y s b