Metamath Proof Explorer


Theorem etasslt

Description: A restatement of noeta using set less-than. (Contributed by Scott Fenton, 10-Aug-2024)

Ref Expression
Assertion etasslt AsBOOnbdayABOxNoAsxxsBbdayxO

Proof

Step Hyp Ref Expression
1 ssltss1 AsBANo
2 ssltex1 AsBAV
3 1 2 jca AsBANoAV
4 ssltss2 AsBBNo
5 ssltex2 AsBBV
6 4 5 jca AsBBNoBV
7 ssltsep AsByAzBy<sz
8 3 6 7 3jca AsBANoAVBNoBVyAzBy<sz
9 8 3ad2ant1 AsBOOnbdayABOANoAVBNoBVyAzBy<sz
10 3simpc AsBOOnbdayABOOOnbdayABO
11 noeta ANoAVBNoBVyAzBy<szOOnbdayABOxNoyAy<sxzBx<szbdayxO
12 9 10 11 syl2anc AsBOOnbdayABOxNoyAy<sxzBx<szbdayxO
13 2 ad2antrr AsBOOnxNoyAy<sxzBx<szbdayxOAV
14 vsnex xV
15 13 14 jctir AsBOOnxNoyAy<sxzBx<szbdayxOAVxV
16 1 ad2antrr AsBOOnxNoyAy<sxzBx<szbdayxOANo
17 snssi xNoxNo
18 17 ad2antrl AsBOOnxNoyAy<sxzBx<szbdayxOxNo
19 simprr1 AsBOOnxNoyAy<sxzBx<szbdayxOyAy<sx
20 vex xV
21 breq2 z=xy<szy<sx
22 20 21 ralsn zxy<szy<sx
23 22 ralbii yAzxy<szyAy<sx
24 19 23 sylibr AsBOOnxNoyAy<sxzBx<szbdayxOyAzxy<sz
25 16 18 24 3jca AsBOOnxNoyAy<sxzBx<szbdayxOANoxNoyAzxy<sz
26 brsslt AsxAVxVANoxNoyAzxy<sz
27 15 25 26 sylanbrc AsBOOnxNoyAy<sxzBx<szbdayxOAsx
28 5 ad2antrr AsBOOnxNoyAy<sxzBx<szbdayxOBV
29 28 14 jctil AsBOOnxNoyAy<sxzBx<szbdayxOxVBV
30 4 ad2antrr AsBOOnxNoyAy<sxzBx<szbdayxOBNo
31 simprr2 AsBOOnxNoyAy<sxzBx<szbdayxOzBx<sz
32 breq1 y=xy<szx<sz
33 32 ralbidv y=xzBy<szzBx<sz
34 20 33 ralsn yxzBy<szzBx<sz
35 31 34 sylibr AsBOOnxNoyAy<sxzBx<szbdayxOyxzBy<sz
36 18 30 35 3jca AsBOOnxNoyAy<sxzBx<szbdayxOxNoBNoyxzBy<sz
37 brsslt xsBxVBVxNoBNoyxzBy<sz
38 29 36 37 sylanbrc AsBOOnxNoyAy<sxzBx<szbdayxOxsB
39 simprr3 AsBOOnxNoyAy<sxzBx<szbdayxObdayxO
40 27 38 39 3jca AsBOOnxNoyAy<sxzBx<szbdayxOAsxxsBbdayxO
41 40 expr AsBOOnxNoyAy<sxzBx<szbdayxOAsxxsBbdayxO
42 41 reximdva AsBOOnxNoyAy<sxzBx<szbdayxOxNoAsxxsBbdayxO
43 42 3adant3 AsBOOnbdayABOxNoyAy<sxzBx<szbdayxOxNoAsxxsBbdayxO
44 12 43 mpd AsBOOnbdayABOxNoAsxxsBbdayxO