Step |
Hyp |
Ref |
Expression |
1 |
|
ssltss1 |
|
2 |
|
ssltex1 |
|
3 |
1 2
|
jca |
|
4 |
|
ssltss2 |
|
5 |
|
ssltex2 |
|
6 |
4 5
|
jca |
|
7 |
|
ssltsep |
|
8 |
3 6 7
|
3jca |
|
9 |
8
|
3ad2ant1 |
|
10 |
|
3simpc |
|
11 |
|
noeta |
|
12 |
9 10 11
|
syl2anc |
|
13 |
2
|
ad2antrr |
|
14 |
|
snex |
|
15 |
13 14
|
jctir |
|
16 |
1
|
ad2antrr |
|
17 |
|
snssi |
|
18 |
17
|
ad2antrl |
|
19 |
|
simprr1 |
|
20 |
|
vex |
|
21 |
|
breq2 |
|
22 |
20 21
|
ralsn |
|
23 |
22
|
ralbii |
|
24 |
19 23
|
sylibr |
|
25 |
16 18 24
|
3jca |
|
26 |
|
brsslt |
|
27 |
15 25 26
|
sylanbrc |
|
28 |
5
|
ad2antrr |
|
29 |
28 14
|
jctil |
|
30 |
4
|
ad2antrr |
|
31 |
|
simprr2 |
|
32 |
|
breq1 |
|
33 |
32
|
ralbidv |
|
34 |
20 33
|
ralsn |
|
35 |
31 34
|
sylibr |
|
36 |
18 30 35
|
3jca |
|
37 |
|
brsslt |
|
38 |
29 36 37
|
sylanbrc |
|
39 |
|
simprr3 |
|
40 |
27 38 39
|
3jca |
|
41 |
40
|
expr |
|
42 |
41
|
reximdva |
|
43 |
42
|
3adant3 |
|
44 |
12 43
|
mpd |
|