Metamath Proof Explorer


Theorem etasslt

Description: A restatement of noeta using set less than. (Contributed by Scott Fenton, 10-Aug-2024)

Ref Expression
Assertion etasslt ( ( 𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ ( 𝐴𝐵 ) ) ⊆ 𝑂 ) → ∃ 𝑥 No ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ∧ ( bday 𝑥 ) ⊆ 𝑂 ) )

Proof

Step Hyp Ref Expression
1 ssltss1 ( 𝐴 <<s 𝐵𝐴 No )
2 ssltex1 ( 𝐴 <<s 𝐵𝐴 ∈ V )
3 1 2 jca ( 𝐴 <<s 𝐵 → ( 𝐴 No 𝐴 ∈ V ) )
4 ssltss2 ( 𝐴 <<s 𝐵𝐵 No )
5 ssltex2 ( 𝐴 <<s 𝐵𝐵 ∈ V )
6 4 5 jca ( 𝐴 <<s 𝐵 → ( 𝐵 No 𝐵 ∈ V ) )
7 ssltsep ( 𝐴 <<s 𝐵 → ∀ 𝑦𝐴𝑧𝐵 𝑦 <s 𝑧 )
8 3 6 7 3jca ( 𝐴 <<s 𝐵 → ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ∧ ∀ 𝑦𝐴𝑧𝐵 𝑦 <s 𝑧 ) )
9 8 3ad2ant1 ( ( 𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ ( 𝐴𝐵 ) ) ⊆ 𝑂 ) → ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ∧ ∀ 𝑦𝐴𝑧𝐵 𝑦 <s 𝑧 ) )
10 3simpc ( ( 𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ ( 𝐴𝐵 ) ) ⊆ 𝑂 ) → ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴𝐵 ) ) ⊆ 𝑂 ) )
11 noeta ( ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ∧ ∀ 𝑦𝐴𝑧𝐵 𝑦 <s 𝑧 ) ∧ ( 𝑂 ∈ On ∧ ( bday “ ( 𝐴𝐵 ) ) ⊆ 𝑂 ) ) → ∃ 𝑥 No ( ∀ 𝑦𝐴 𝑦 <s 𝑥 ∧ ∀ 𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥 ) ⊆ 𝑂 ) )
12 9 10 11 syl2anc ( ( 𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ ( 𝐴𝐵 ) ) ⊆ 𝑂 ) → ∃ 𝑥 No ( ∀ 𝑦𝐴 𝑦 <s 𝑥 ∧ ∀ 𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥 ) ⊆ 𝑂 ) )
13 2 ad2antrr ( ( ( 𝐴 <<s 𝐵𝑂 ∈ On ) ∧ ( 𝑥 No ∧ ( ∀ 𝑦𝐴 𝑦 <s 𝑥 ∧ ∀ 𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥 ) ⊆ 𝑂 ) ) ) → 𝐴 ∈ V )
14 snex { 𝑥 } ∈ V
15 13 14 jctir ( ( ( 𝐴 <<s 𝐵𝑂 ∈ On ) ∧ ( 𝑥 No ∧ ( ∀ 𝑦𝐴 𝑦 <s 𝑥 ∧ ∀ 𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥 ) ⊆ 𝑂 ) ) ) → ( 𝐴 ∈ V ∧ { 𝑥 } ∈ V ) )
16 1 ad2antrr ( ( ( 𝐴 <<s 𝐵𝑂 ∈ On ) ∧ ( 𝑥 No ∧ ( ∀ 𝑦𝐴 𝑦 <s 𝑥 ∧ ∀ 𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥 ) ⊆ 𝑂 ) ) ) → 𝐴 No )
17 snssi ( 𝑥 No → { 𝑥 } ⊆ No )
18 17 ad2antrl ( ( ( 𝐴 <<s 𝐵𝑂 ∈ On ) ∧ ( 𝑥 No ∧ ( ∀ 𝑦𝐴 𝑦 <s 𝑥 ∧ ∀ 𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥 ) ⊆ 𝑂 ) ) ) → { 𝑥 } ⊆ No )
19 simprr1 ( ( ( 𝐴 <<s 𝐵𝑂 ∈ On ) ∧ ( 𝑥 No ∧ ( ∀ 𝑦𝐴 𝑦 <s 𝑥 ∧ ∀ 𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥 ) ⊆ 𝑂 ) ) ) → ∀ 𝑦𝐴 𝑦 <s 𝑥 )
20 vex 𝑥 ∈ V
21 breq2 ( 𝑧 = 𝑥 → ( 𝑦 <s 𝑧𝑦 <s 𝑥 ) )
22 20 21 ralsn ( ∀ 𝑧 ∈ { 𝑥 } 𝑦 <s 𝑧𝑦 <s 𝑥 )
23 22 ralbii ( ∀ 𝑦𝐴𝑧 ∈ { 𝑥 } 𝑦 <s 𝑧 ↔ ∀ 𝑦𝐴 𝑦 <s 𝑥 )
24 19 23 sylibr ( ( ( 𝐴 <<s 𝐵𝑂 ∈ On ) ∧ ( 𝑥 No ∧ ( ∀ 𝑦𝐴 𝑦 <s 𝑥 ∧ ∀ 𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥 ) ⊆ 𝑂 ) ) ) → ∀ 𝑦𝐴𝑧 ∈ { 𝑥 } 𝑦 <s 𝑧 )
25 16 18 24 3jca ( ( ( 𝐴 <<s 𝐵𝑂 ∈ On ) ∧ ( 𝑥 No ∧ ( ∀ 𝑦𝐴 𝑦 <s 𝑥 ∧ ∀ 𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥 ) ⊆ 𝑂 ) ) ) → ( 𝐴 No ∧ { 𝑥 } ⊆ No ∧ ∀ 𝑦𝐴𝑧 ∈ { 𝑥 } 𝑦 <s 𝑧 ) )
26 brsslt ( 𝐴 <<s { 𝑥 } ↔ ( ( 𝐴 ∈ V ∧ { 𝑥 } ∈ V ) ∧ ( 𝐴 No ∧ { 𝑥 } ⊆ No ∧ ∀ 𝑦𝐴𝑧 ∈ { 𝑥 } 𝑦 <s 𝑧 ) ) )
27 15 25 26 sylanbrc ( ( ( 𝐴 <<s 𝐵𝑂 ∈ On ) ∧ ( 𝑥 No ∧ ( ∀ 𝑦𝐴 𝑦 <s 𝑥 ∧ ∀ 𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥 ) ⊆ 𝑂 ) ) ) → 𝐴 <<s { 𝑥 } )
28 5 ad2antrr ( ( ( 𝐴 <<s 𝐵𝑂 ∈ On ) ∧ ( 𝑥 No ∧ ( ∀ 𝑦𝐴 𝑦 <s 𝑥 ∧ ∀ 𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥 ) ⊆ 𝑂 ) ) ) → 𝐵 ∈ V )
29 28 14 jctil ( ( ( 𝐴 <<s 𝐵𝑂 ∈ On ) ∧ ( 𝑥 No ∧ ( ∀ 𝑦𝐴 𝑦 <s 𝑥 ∧ ∀ 𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥 ) ⊆ 𝑂 ) ) ) → ( { 𝑥 } ∈ V ∧ 𝐵 ∈ V ) )
30 4 ad2antrr ( ( ( 𝐴 <<s 𝐵𝑂 ∈ On ) ∧ ( 𝑥 No ∧ ( ∀ 𝑦𝐴 𝑦 <s 𝑥 ∧ ∀ 𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥 ) ⊆ 𝑂 ) ) ) → 𝐵 No )
31 simprr2 ( ( ( 𝐴 <<s 𝐵𝑂 ∈ On ) ∧ ( 𝑥 No ∧ ( ∀ 𝑦𝐴 𝑦 <s 𝑥 ∧ ∀ 𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥 ) ⊆ 𝑂 ) ) ) → ∀ 𝑧𝐵 𝑥 <s 𝑧 )
32 breq1 ( 𝑦 = 𝑥 → ( 𝑦 <s 𝑧𝑥 <s 𝑧 ) )
33 32 ralbidv ( 𝑦 = 𝑥 → ( ∀ 𝑧𝐵 𝑦 <s 𝑧 ↔ ∀ 𝑧𝐵 𝑥 <s 𝑧 ) )
34 20 33 ralsn ( ∀ 𝑦 ∈ { 𝑥 } ∀ 𝑧𝐵 𝑦 <s 𝑧 ↔ ∀ 𝑧𝐵 𝑥 <s 𝑧 )
35 31 34 sylibr ( ( ( 𝐴 <<s 𝐵𝑂 ∈ On ) ∧ ( 𝑥 No ∧ ( ∀ 𝑦𝐴 𝑦 <s 𝑥 ∧ ∀ 𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥 ) ⊆ 𝑂 ) ) ) → ∀ 𝑦 ∈ { 𝑥 } ∀ 𝑧𝐵 𝑦 <s 𝑧 )
36 18 30 35 3jca ( ( ( 𝐴 <<s 𝐵𝑂 ∈ On ) ∧ ( 𝑥 No ∧ ( ∀ 𝑦𝐴 𝑦 <s 𝑥 ∧ ∀ 𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥 ) ⊆ 𝑂 ) ) ) → ( { 𝑥 } ⊆ No 𝐵 No ∧ ∀ 𝑦 ∈ { 𝑥 } ∀ 𝑧𝐵 𝑦 <s 𝑧 ) )
37 brsslt ( { 𝑥 } <<s 𝐵 ↔ ( ( { 𝑥 } ∈ V ∧ 𝐵 ∈ V ) ∧ ( { 𝑥 } ⊆ No 𝐵 No ∧ ∀ 𝑦 ∈ { 𝑥 } ∀ 𝑧𝐵 𝑦 <s 𝑧 ) ) )
38 29 36 37 sylanbrc ( ( ( 𝐴 <<s 𝐵𝑂 ∈ On ) ∧ ( 𝑥 No ∧ ( ∀ 𝑦𝐴 𝑦 <s 𝑥 ∧ ∀ 𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥 ) ⊆ 𝑂 ) ) ) → { 𝑥 } <<s 𝐵 )
39 simprr3 ( ( ( 𝐴 <<s 𝐵𝑂 ∈ On ) ∧ ( 𝑥 No ∧ ( ∀ 𝑦𝐴 𝑦 <s 𝑥 ∧ ∀ 𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥 ) ⊆ 𝑂 ) ) ) → ( bday 𝑥 ) ⊆ 𝑂 )
40 27 38 39 3jca ( ( ( 𝐴 <<s 𝐵𝑂 ∈ On ) ∧ ( 𝑥 No ∧ ( ∀ 𝑦𝐴 𝑦 <s 𝑥 ∧ ∀ 𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥 ) ⊆ 𝑂 ) ) ) → ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ∧ ( bday 𝑥 ) ⊆ 𝑂 ) )
41 40 expr ( ( ( 𝐴 <<s 𝐵𝑂 ∈ On ) ∧ 𝑥 No ) → ( ( ∀ 𝑦𝐴 𝑦 <s 𝑥 ∧ ∀ 𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥 ) ⊆ 𝑂 ) → ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ∧ ( bday 𝑥 ) ⊆ 𝑂 ) ) )
42 41 reximdva ( ( 𝐴 <<s 𝐵𝑂 ∈ On ) → ( ∃ 𝑥 No ( ∀ 𝑦𝐴 𝑦 <s 𝑥 ∧ ∀ 𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥 ) ⊆ 𝑂 ) → ∃ 𝑥 No ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ∧ ( bday 𝑥 ) ⊆ 𝑂 ) ) )
43 42 3adant3 ( ( 𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ ( 𝐴𝐵 ) ) ⊆ 𝑂 ) → ( ∃ 𝑥 No ( ∀ 𝑦𝐴 𝑦 <s 𝑥 ∧ ∀ 𝑧𝐵 𝑥 <s 𝑧 ∧ ( bday 𝑥 ) ⊆ 𝑂 ) → ∃ 𝑥 No ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ∧ ( bday 𝑥 ) ⊆ 𝑂 ) ) )
44 12 43 mpd ( ( 𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ ( 𝐴𝐵 ) ) ⊆ 𝑂 ) → ∃ 𝑥 No ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ∧ ( bday 𝑥 ) ⊆ 𝑂 ) )