Metamath Proof Explorer


Theorem etasslt2

Description: A version of etasslt with fewer hypotheses but a weaker upper bound. (Contributed by Scott Fenton, 10-Dec-2021)

Ref Expression
Assertion etasslt2 ( 𝐴 <<s 𝐵 → ∃ 𝑥 No ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ∧ ( bday 𝑥 ) ⊆ suc ( bday “ ( 𝐴𝐵 ) ) ) )

Proof

Step Hyp Ref Expression
1 bdayfun Fun bday
2 ssltex1 ( 𝐴 <<s 𝐵𝐴 ∈ V )
3 ssltex2 ( 𝐴 <<s 𝐵𝐵 ∈ V )
4 unexg ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴𝐵 ) ∈ V )
5 2 3 4 syl2anc ( 𝐴 <<s 𝐵 → ( 𝐴𝐵 ) ∈ V )
6 funimaexg ( ( Fun bday ∧ ( 𝐴𝐵 ) ∈ V ) → ( bday “ ( 𝐴𝐵 ) ) ∈ V )
7 1 5 6 sylancr ( 𝐴 <<s 𝐵 → ( bday “ ( 𝐴𝐵 ) ) ∈ V )
8 7 uniexd ( 𝐴 <<s 𝐵 ( bday “ ( 𝐴𝐵 ) ) ∈ V )
9 imassrn ( bday “ ( 𝐴𝐵 ) ) ⊆ ran bday
10 bdayrn ran bday = On
11 9 10 sseqtri ( bday “ ( 𝐴𝐵 ) ) ⊆ On
12 ssorduni ( ( bday “ ( 𝐴𝐵 ) ) ⊆ On → Ord ( bday “ ( 𝐴𝐵 ) ) )
13 11 12 ax-mp Ord ( bday “ ( 𝐴𝐵 ) )
14 elon2 ( ( bday “ ( 𝐴𝐵 ) ) ∈ On ↔ ( Ord ( bday “ ( 𝐴𝐵 ) ) ∧ ( bday “ ( 𝐴𝐵 ) ) ∈ V ) )
15 13 14 mpbiran ( ( bday “ ( 𝐴𝐵 ) ) ∈ On ↔ ( bday “ ( 𝐴𝐵 ) ) ∈ V )
16 8 15 sylibr ( 𝐴 <<s 𝐵 ( bday “ ( 𝐴𝐵 ) ) ∈ On )
17 sucelon ( ( bday “ ( 𝐴𝐵 ) ) ∈ On ↔ suc ( bday “ ( 𝐴𝐵 ) ) ∈ On )
18 16 17 sylib ( 𝐴 <<s 𝐵 → suc ( bday “ ( 𝐴𝐵 ) ) ∈ On )
19 onsucuni ( ( bday “ ( 𝐴𝐵 ) ) ⊆ On → ( bday “ ( 𝐴𝐵 ) ) ⊆ suc ( bday “ ( 𝐴𝐵 ) ) )
20 11 19 mp1i ( 𝐴 <<s 𝐵 → ( bday “ ( 𝐴𝐵 ) ) ⊆ suc ( bday “ ( 𝐴𝐵 ) ) )
21 etasslt ( ( 𝐴 <<s 𝐵 ∧ suc ( bday “ ( 𝐴𝐵 ) ) ∈ On ∧ ( bday “ ( 𝐴𝐵 ) ) ⊆ suc ( bday “ ( 𝐴𝐵 ) ) ) → ∃ 𝑥 No ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ∧ ( bday 𝑥 ) ⊆ suc ( bday “ ( 𝐴𝐵 ) ) ) )
22 18 20 21 mpd3an23 ( 𝐴 <<s 𝐵 → ∃ 𝑥 No ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ∧ ( bday 𝑥 ) ⊆ suc ( bday “ ( 𝐴𝐵 ) ) ) )