Step |
Hyp |
Ref |
Expression |
1 |
|
bdayfun |
|- Fun bday |
2 |
|
ssltex1 |
|- ( A < A e. _V ) |
3 |
|
ssltex2 |
|- ( A < B e. _V ) |
4 |
|
unexg |
|- ( ( A e. _V /\ B e. _V ) -> ( A u. B ) e. _V ) |
5 |
2 3 4
|
syl2anc |
|- ( A < ( A u. B ) e. _V ) |
6 |
|
funimaexg |
|- ( ( Fun bday /\ ( A u. B ) e. _V ) -> ( bday " ( A u. B ) ) e. _V ) |
7 |
1 5 6
|
sylancr |
|- ( A < ( bday " ( A u. B ) ) e. _V ) |
8 |
7
|
uniexd |
|- ( A < U. ( bday " ( A u. B ) ) e. _V ) |
9 |
|
imassrn |
|- ( bday " ( A u. B ) ) C_ ran bday |
10 |
|
bdayrn |
|- ran bday = On |
11 |
9 10
|
sseqtri |
|- ( bday " ( A u. B ) ) C_ On |
12 |
|
ssorduni |
|- ( ( bday " ( A u. B ) ) C_ On -> Ord U. ( bday " ( A u. B ) ) ) |
13 |
11 12
|
ax-mp |
|- Ord U. ( bday " ( A u. B ) ) |
14 |
|
elon2 |
|- ( U. ( bday " ( A u. B ) ) e. On <-> ( Ord U. ( bday " ( A u. B ) ) /\ U. ( bday " ( A u. B ) ) e. _V ) ) |
15 |
13 14
|
mpbiran |
|- ( U. ( bday " ( A u. B ) ) e. On <-> U. ( bday " ( A u. B ) ) e. _V ) |
16 |
8 15
|
sylibr |
|- ( A < U. ( bday " ( A u. B ) ) e. On ) |
17 |
|
sucelon |
|- ( U. ( bday " ( A u. B ) ) e. On <-> suc U. ( bday " ( A u. B ) ) e. On ) |
18 |
16 17
|
sylib |
|- ( A < suc U. ( bday " ( A u. B ) ) e. On ) |
19 |
|
onsucuni |
|- ( ( bday " ( A u. B ) ) C_ On -> ( bday " ( A u. B ) ) C_ suc U. ( bday " ( A u. B ) ) ) |
20 |
11 19
|
mp1i |
|- ( A < ( bday " ( A u. B ) ) C_ suc U. ( bday " ( A u. B ) ) ) |
21 |
|
etasslt |
|- ( ( A < E. x e. No ( A < |
22 |
18 20 21
|
mpd3an23 |
|- ( A < E. x e. No ( A < |