Metamath Proof Explorer


Theorem scutbdaybnd

Description: An upper bound on the birthday of a surreal cut. (Contributed by Scott Fenton, 10-Aug-2024)

Ref Expression
Assertion scutbdaybnd
|- ( ( A < ( bday ` ( A |s B ) ) C_ O )

Proof

Step Hyp Ref Expression
1 etasslt
 |-  ( ( A < E. x e. No ( A <
2 simpl1
 |-  ( ( ( A < A <
3 scutbday
 |-  ( A < ( bday ` ( A |s B ) ) = |^| ( bday " { y e. No | ( A <
4 2 3 syl
 |-  ( ( ( A < ( bday ` ( A |s B ) ) = |^| ( bday " { y e. No | ( A <
5 bdayfn
 |-  bday Fn No
6 ssrab2
 |-  { y e. No | ( A <
7 sneq
 |-  ( y = x -> { y } = { x } )
8 7 breq2d
 |-  ( y = x -> ( A < A <
9 7 breq1d
 |-  ( y = x -> ( { y } < { x } <
10 8 9 anbi12d
 |-  ( y = x -> ( ( A < ( A <
11 simprl
 |-  ( ( ( A < x e. No )
12 simprr1
 |-  ( ( ( A < A <
13 simprr2
 |-  ( ( ( A < { x } <
14 12 13 jca
 |-  ( ( ( A < ( A <
15 10 11 14 elrabd
 |-  ( ( ( A < x e. { y e. No | ( A <
16 fnfvima
 |-  ( ( bday Fn No /\ { y e. No | ( A < ( bday ` x ) e. ( bday " { y e. No | ( A <
17 5 6 15 16 mp3an12i
 |-  ( ( ( A < ( bday ` x ) e. ( bday " { y e. No | ( A <
18 intss1
 |-  ( ( bday ` x ) e. ( bday " { y e. No | ( A < |^| ( bday " { y e. No | ( A <
19 17 18 syl
 |-  ( ( ( A < |^| ( bday " { y e. No | ( A <
20 4 19 eqsstrd
 |-  ( ( ( A < ( bday ` ( A |s B ) ) C_ ( bday ` x ) )
21 simprr3
 |-  ( ( ( A < ( bday ` x ) C_ O )
22 20 21 sstrd
 |-  ( ( ( A < ( bday ` ( A |s B ) ) C_ O )
23 1 22 rexlimddv
 |-  ( ( A < ( bday ` ( A |s B ) ) C_ O )