Metamath Proof Explorer


Theorem etasslt2

Description: A version of etasslt with fewer hypotheses but a weaker upper bound. (Contributed by Scott Fenton, 10-Dec-2021)

Ref Expression
Assertion etasslt2 AsBxNoAsxxsBbdayxsucbdayAB

Proof

Step Hyp Ref Expression
1 bdayfun Funbday
2 ssltex1 AsBAV
3 ssltex2 AsBBV
4 unexg AVBVABV
5 2 3 4 syl2anc AsBABV
6 funimaexg FunbdayABVbdayABV
7 1 5 6 sylancr AsBbdayABV
8 7 uniexd AsBbdayABV
9 imassrn bdayABranbday
10 bdayrn ranbday=On
11 9 10 sseqtri bdayABOn
12 ssorduni bdayABOnOrdbdayAB
13 11 12 ax-mp OrdbdayAB
14 elon2 bdayABOnOrdbdayABbdayABV
15 13 14 mpbiran bdayABOnbdayABV
16 8 15 sylibr AsBbdayABOn
17 onsucb bdayABOnsucbdayABOn
18 16 17 sylib AsBsucbdayABOn
19 onsucuni bdayABOnbdayABsucbdayAB
20 11 19 mp1i AsBbdayABsucbdayAB
21 etasslt AsBsucbdayABOnbdayABsucbdayABxNoAsxxsBbdayxsucbdayAB
22 18 20 21 mpd3an23 AsBxNoAsxxsBbdayxsucbdayAB