Metamath Proof Explorer


Theorem scutf

Description: Functionality statement for the surreal cut operator. (Contributed by Scott Fenton, 15-Dec-2021)

Ref Expression
Assertion scutf
|- |s : < No

Proof

Step Hyp Ref Expression
1 df-scut
 |-  |s = ( a e. ~P No , b e. ( < ( iota_ x e. { y e. No | ( a <
2 1 mpofun
 |-  Fun |s
3 dmscut
 |-  dom |s = <
4 df-fn
 |-  ( |s Fn < ( Fun |s /\ dom |s = <
5 2 3 4 mpbir2an
 |-  |s Fn <
6 1 rnmpo
 |-  ran |s = { z | E. a e. ~P No E. b e. ( <
7 vex
 |-  a e. _V
8 vex
 |-  b e. _V
9 7 8 elimasn
 |-  ( b e. ( < <. a , b >. e. <
10 df-br
 |-  ( a < <. a , b >. e. <
11 9 10 bitr4i
 |-  ( b e. ( < a <
12 scutval
 |-  ( a < ( a |s b ) = ( iota_ x e. { y e. No | ( a <
13 scutcl
 |-  ( a < ( a |s b ) e. No )
14 12 13 eqeltrrd
 |-  ( a < ( iota_ x e. { y e. No | ( a <
15 11 14 sylbi
 |-  ( b e. ( < ( iota_ x e. { y e. No | ( a <
16 eleq1a
 |-  ( ( iota_ x e. { y e. No | ( a < ( z = ( iota_ x e. { y e. No | ( a < z e. No ) )
17 15 16 syl
 |-  ( b e. ( < ( z = ( iota_ x e. { y e. No | ( a < z e. No ) )
18 17 adantl
 |-  ( ( a e. ~P No /\ b e. ( < ( z = ( iota_ x e. { y e. No | ( a < z e. No ) )
19 18 rexlimivv
 |-  ( E. a e. ~P No E. b e. ( < z e. No )
20 19 abssi
 |-  { z | E. a e. ~P No E. b e. ( <
21 6 20 eqsstri
 |-  ran |s C_ No
22 df-f
 |-  ( |s : < No <-> ( |s Fn <
23 5 21 22 mpbir2an
 |-  |s : < No