Description: The range of a function expressed as a collection of the function's values. (Contributed by NM, 20-Oct-2005) (Proof shortened by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fnrnfv | |- ( F Fn A -> ran F = { y | E. x e. A y = ( F ` x ) } ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dffn5 | |- ( F Fn A <-> F = ( x e. A |-> ( F ` x ) ) ) | |
| 2 | rneq | |- ( F = ( x e. A |-> ( F ` x ) ) -> ran F = ran ( x e. A |-> ( F ` x ) ) ) | |
| 3 | 1 2 | sylbi | |- ( F Fn A -> ran F = ran ( x e. A |-> ( F ` x ) ) ) | 
| 4 | eqid | |- ( x e. A |-> ( F ` x ) ) = ( x e. A |-> ( F ` x ) ) | |
| 5 | 4 | rnmpt |  |-  ran ( x e. A |-> ( F ` x ) ) = { y | E. x e. A y = ( F ` x ) } | 
| 6 | 3 5 | eqtrdi |  |-  ( F Fn A -> ran F = { y | E. x e. A y = ( F ` x ) } ) |