Metamath Proof Explorer


Theorem oldf

Description: The older function is a function from ordinals to sets of surreals. (Contributed by Scott Fenton, 6-Aug-2024)

Ref Expression
Assertion oldf
|- _Old : On --> ~P No

Proof

Step Hyp Ref Expression
1 df-old
 |-  _Old = ( x e. On |-> U. ( _M " x ) )
2 imassrn
 |-  ( _M " x ) C_ ran _M
3 madef
 |-  _M : On --> ~P No
4 frn
 |-  ( _M : On --> ~P No -> ran _M C_ ~P No )
5 3 4 ax-mp
 |-  ran _M C_ ~P No
6 2 5 sstri
 |-  ( _M " x ) C_ ~P No
7 6 sseli
 |-  ( y e. ( _M " x ) -> y e. ~P No )
8 7 elpwid
 |-  ( y e. ( _M " x ) -> y C_ No )
9 8 rgen
 |-  A. y e. ( _M " x ) y C_ No
10 9 a1i
 |-  ( x e. On -> A. y e. ( _M " x ) y C_ No )
11 ffun
 |-  ( _M : On --> ~P No -> Fun _M )
12 3 11 ax-mp
 |-  Fun _M
13 vex
 |-  x e. _V
14 13 funimaex
 |-  ( Fun _M -> ( _M " x ) e. _V )
15 12 14 ax-mp
 |-  ( _M " x ) e. _V
16 15 uniex
 |-  U. ( _M " x ) e. _V
17 16 elpw
 |-  ( U. ( _M " x ) e. ~P No <-> U. ( _M " x ) C_ No )
18 unissb
 |-  ( U. ( _M " x ) C_ No <-> A. y e. ( _M " x ) y C_ No )
19 17 18 bitri
 |-  ( U. ( _M " x ) e. ~P No <-> A. y e. ( _M " x ) y C_ No )
20 10 19 sylibr
 |-  ( x e. On -> U. ( _M " x ) e. ~P No )
21 1 20 fmpti
 |-  _Old : On --> ~P No