Step |
Hyp |
Ref |
Expression |
1 |
|
df-old |
|- _Old = ( x e. On |-> U. ( _M " x ) ) |
2 |
|
imassrn |
|- ( _M " x ) C_ ran _M |
3 |
|
madef |
|- _M : On --> ~P No |
4 |
|
frn |
|- ( _M : On --> ~P No -> ran _M C_ ~P No ) |
5 |
3 4
|
ax-mp |
|- ran _M C_ ~P No |
6 |
2 5
|
sstri |
|- ( _M " x ) C_ ~P No |
7 |
6
|
sseli |
|- ( y e. ( _M " x ) -> y e. ~P No ) |
8 |
7
|
elpwid |
|- ( y e. ( _M " x ) -> y C_ No ) |
9 |
8
|
rgen |
|- A. y e. ( _M " x ) y C_ No |
10 |
9
|
a1i |
|- ( x e. On -> A. y e. ( _M " x ) y C_ No ) |
11 |
|
ffun |
|- ( _M : On --> ~P No -> Fun _M ) |
12 |
3 11
|
ax-mp |
|- Fun _M |
13 |
|
vex |
|- x e. _V |
14 |
13
|
funimaex |
|- ( Fun _M -> ( _M " x ) e. _V ) |
15 |
12 14
|
ax-mp |
|- ( _M " x ) e. _V |
16 |
15
|
uniex |
|- U. ( _M " x ) e. _V |
17 |
16
|
elpw |
|- ( U. ( _M " x ) e. ~P No <-> U. ( _M " x ) C_ No ) |
18 |
|
unissb |
|- ( U. ( _M " x ) C_ No <-> A. y e. ( _M " x ) y C_ No ) |
19 |
17 18
|
bitri |
|- ( U. ( _M " x ) e. ~P No <-> A. y e. ( _M " x ) y C_ No ) |
20 |
10 19
|
sylibr |
|- ( x e. On -> U. ( _M " x ) e. ~P No ) |
21 |
1 20
|
fmpti |
|- _Old : On --> ~P No |