Step |
Hyp |
Ref |
Expression |
1 |
|
df-old |
⊢ O = ( 𝑥 ∈ On ↦ ∪ ( M “ 𝑥 ) ) |
2 |
|
imassrn |
⊢ ( M “ 𝑥 ) ⊆ ran M |
3 |
|
madef |
⊢ M : On ⟶ 𝒫 No |
4 |
|
frn |
⊢ ( M : On ⟶ 𝒫 No → ran M ⊆ 𝒫 No ) |
5 |
3 4
|
ax-mp |
⊢ ran M ⊆ 𝒫 No |
6 |
2 5
|
sstri |
⊢ ( M “ 𝑥 ) ⊆ 𝒫 No |
7 |
6
|
sseli |
⊢ ( 𝑦 ∈ ( M “ 𝑥 ) → 𝑦 ∈ 𝒫 No ) |
8 |
7
|
elpwid |
⊢ ( 𝑦 ∈ ( M “ 𝑥 ) → 𝑦 ⊆ No ) |
9 |
8
|
rgen |
⊢ ∀ 𝑦 ∈ ( M “ 𝑥 ) 𝑦 ⊆ No |
10 |
9
|
a1i |
⊢ ( 𝑥 ∈ On → ∀ 𝑦 ∈ ( M “ 𝑥 ) 𝑦 ⊆ No ) |
11 |
|
ffun |
⊢ ( M : On ⟶ 𝒫 No → Fun M ) |
12 |
3 11
|
ax-mp |
⊢ Fun M |
13 |
|
vex |
⊢ 𝑥 ∈ V |
14 |
13
|
funimaex |
⊢ ( Fun M → ( M “ 𝑥 ) ∈ V ) |
15 |
12 14
|
ax-mp |
⊢ ( M “ 𝑥 ) ∈ V |
16 |
15
|
uniex |
⊢ ∪ ( M “ 𝑥 ) ∈ V |
17 |
16
|
elpw |
⊢ ( ∪ ( M “ 𝑥 ) ∈ 𝒫 No ↔ ∪ ( M “ 𝑥 ) ⊆ No ) |
18 |
|
unissb |
⊢ ( ∪ ( M “ 𝑥 ) ⊆ No ↔ ∀ 𝑦 ∈ ( M “ 𝑥 ) 𝑦 ⊆ No ) |
19 |
17 18
|
bitri |
⊢ ( ∪ ( M “ 𝑥 ) ∈ 𝒫 No ↔ ∀ 𝑦 ∈ ( M “ 𝑥 ) 𝑦 ⊆ No ) |
20 |
10 19
|
sylibr |
⊢ ( 𝑥 ∈ On → ∪ ( M “ 𝑥 ) ∈ 𝒫 No ) |
21 |
1 20
|
fmpti |
⊢ O : On ⟶ 𝒫 No |