Metamath Proof Explorer


Theorem oldf

Description: The older function is a function from ordinals to sets of surreals. (Contributed by Scott Fenton, 6-Aug-2024)

Ref Expression
Assertion oldf O : On ⟶ 𝒫 No

Proof

Step Hyp Ref Expression
1 df-old O = ( 𝑥 ∈ On ↦ ( M “ 𝑥 ) )
2 imassrn ( M “ 𝑥 ) ⊆ ran M
3 madef M : On ⟶ 𝒫 No
4 frn ( M : On ⟶ 𝒫 No → ran M ⊆ 𝒫 No )
5 3 4 ax-mp ran M ⊆ 𝒫 No
6 2 5 sstri ( M “ 𝑥 ) ⊆ 𝒫 No
7 6 sseli ( 𝑦 ∈ ( M “ 𝑥 ) → 𝑦 ∈ 𝒫 No )
8 7 elpwid ( 𝑦 ∈ ( M “ 𝑥 ) → 𝑦 No )
9 8 rgen 𝑦 ∈ ( M “ 𝑥 ) 𝑦 No
10 9 a1i ( 𝑥 ∈ On → ∀ 𝑦 ∈ ( M “ 𝑥 ) 𝑦 No )
11 ffun ( M : On ⟶ 𝒫 No → Fun M )
12 3 11 ax-mp Fun M
13 vex 𝑥 ∈ V
14 13 funimaex ( Fun M → ( M “ 𝑥 ) ∈ V )
15 12 14 ax-mp ( M “ 𝑥 ) ∈ V
16 15 uniex ( M “ 𝑥 ) ∈ V
17 16 elpw ( ( M “ 𝑥 ) ∈ 𝒫 No ( M “ 𝑥 ) ⊆ No )
18 unissb ( ( M “ 𝑥 ) ⊆ No ↔ ∀ 𝑦 ∈ ( M “ 𝑥 ) 𝑦 No )
19 17 18 bitri ( ( M “ 𝑥 ) ∈ 𝒫 No ↔ ∀ 𝑦 ∈ ( M “ 𝑥 ) 𝑦 No )
20 10 19 sylibr ( 𝑥 ∈ On → ( M “ 𝑥 ) ∈ 𝒫 No )
21 1 20 fmpti O : On ⟶ 𝒫 No