Description: The new function is a function from ordinals to sets of surreals. (Contributed by Scott Fenton, 6-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | newf | ⊢ N : On ⟶ 𝒫 No | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-new | ⊢ N = ( 𝑥 ∈ On ↦ ( ( M ‘ 𝑥 ) ∖ ( O ‘ 𝑥 ) ) ) | |
| 2 | madef | ⊢ M : On ⟶ 𝒫 No | |
| 3 | 2 | ffvelcdmi | ⊢ ( 𝑥 ∈ On → ( M ‘ 𝑥 ) ∈ 𝒫 No ) | 
| 4 | 3 | elpwid | ⊢ ( 𝑥 ∈ On → ( M ‘ 𝑥 ) ⊆ No ) | 
| 5 | 4 | ssdifssd | ⊢ ( 𝑥 ∈ On → ( ( M ‘ 𝑥 ) ∖ ( O ‘ 𝑥 ) ) ⊆ No ) | 
| 6 | fvex | ⊢ ( M ‘ 𝑥 ) ∈ V | |
| 7 | 6 | difexi | ⊢ ( ( M ‘ 𝑥 ) ∖ ( O ‘ 𝑥 ) ) ∈ V | 
| 8 | 7 | elpw | ⊢ ( ( ( M ‘ 𝑥 ) ∖ ( O ‘ 𝑥 ) ) ∈ 𝒫 No ↔ ( ( M ‘ 𝑥 ) ∖ ( O ‘ 𝑥 ) ) ⊆ No ) | 
| 9 | 5 8 | sylibr | ⊢ ( 𝑥 ∈ On → ( ( M ‘ 𝑥 ) ∖ ( O ‘ 𝑥 ) ) ∈ 𝒫 No ) | 
| 10 | 1 9 | fmpti | ⊢ N : On ⟶ 𝒫 No |