Metamath Proof Explorer


Theorem newf

Description: The new function is a function from ordinals to sets of surreals. (Contributed by Scott Fenton, 6-Aug-2024)

Ref Expression
Assertion newf N : On ⟶ 𝒫 No

Proof

Step Hyp Ref Expression
1 df-new N = ( 𝑥 ∈ On ↦ ( ( M ‘ 𝑥 ) ∖ ( O ‘ 𝑥 ) ) )
2 madef M : On ⟶ 𝒫 No
3 2 ffvelrni ( 𝑥 ∈ On → ( M ‘ 𝑥 ) ∈ 𝒫 No )
4 3 elpwid ( 𝑥 ∈ On → ( M ‘ 𝑥 ) ⊆ No )
5 4 ssdifssd ( 𝑥 ∈ On → ( ( M ‘ 𝑥 ) ∖ ( O ‘ 𝑥 ) ) ⊆ No )
6 fvex ( M ‘ 𝑥 ) ∈ V
7 6 difexi ( ( M ‘ 𝑥 ) ∖ ( O ‘ 𝑥 ) ) ∈ V
8 7 elpw ( ( ( M ‘ 𝑥 ) ∖ ( O ‘ 𝑥 ) ) ∈ 𝒫 No ↔ ( ( M ‘ 𝑥 ) ∖ ( O ‘ 𝑥 ) ) ⊆ No )
9 5 8 sylibr ( 𝑥 ∈ On → ( ( M ‘ 𝑥 ) ∖ ( O ‘ 𝑥 ) ) ∈ 𝒫 No )
10 1 9 fmpti N : On ⟶ 𝒫 No