Step |
Hyp |
Ref |
Expression |
1 |
|
df-new |
|- _N = ( x e. On |-> ( ( _M ` x ) \ ( _Old ` x ) ) ) |
2 |
|
madef |
|- _M : On --> ~P No |
3 |
2
|
ffvelrni |
|- ( x e. On -> ( _M ` x ) e. ~P No ) |
4 |
3
|
elpwid |
|- ( x e. On -> ( _M ` x ) C_ No ) |
5 |
4
|
ssdifssd |
|- ( x e. On -> ( ( _M ` x ) \ ( _Old ` x ) ) C_ No ) |
6 |
|
fvex |
|- ( _M ` x ) e. _V |
7 |
6
|
difexi |
|- ( ( _M ` x ) \ ( _Old ` x ) ) e. _V |
8 |
7
|
elpw |
|- ( ( ( _M ` x ) \ ( _Old ` x ) ) e. ~P No <-> ( ( _M ` x ) \ ( _Old ` x ) ) C_ No ) |
9 |
5 8
|
sylibr |
|- ( x e. On -> ( ( _M ` x ) \ ( _Old ` x ) ) e. ~P No ) |
10 |
1 9
|
fmpti |
|- _N : On --> ~P No |