Metamath Proof Explorer


Theorem bdayelon

Description: The value of the birthday function is always an ordinal. (Contributed by Scott Fenton, 14-Jun-2011) (Proof shortened by Scott Fenton, 8-Dec-2021)

Ref Expression
Assertion bdayelon
|- ( bday ` A ) e. On

Proof

Step Hyp Ref Expression
1 bdayfo
 |-  bday : No -onto-> On
2 fof
 |-  ( bday : No -onto-> On -> bday : No --> On )
3 1 2 ax-mp
 |-  bday : No --> On
4 0elon
 |-  (/) e. On
5 3 4 f0cli
 |-  ( bday ` A ) e. On