Metamath Proof Explorer


Theorem nocvxminlem

Description: Lemma for nocvxmin . Given two birthday-minimal elements of a convex class of surreals, they are not comparable. (Contributed by Scott Fenton, 30-Jun-2011)

Ref Expression
Assertion nocvxminlem
|- ( ( A C_ No /\ A. x e. A A. y e. A A. z e. No ( ( x  z e. A ) ) -> ( ( ( X e. A /\ Y e. A ) /\ ( ( bday ` X ) = |^| ( bday " A ) /\ ( bday ` Y ) = |^| ( bday " A ) ) ) -> -. X 

Proof

Step Hyp Ref Expression
1 breq1
 |-  ( x = X -> ( x  X 
2 1 anbi1d
 |-  ( x = X -> ( ( x  ( X 
3 2 imbi1d
 |-  ( x = X -> ( ( ( x  z e. A ) <-> ( ( X  z e. A ) ) )
4 3 ralbidv
 |-  ( x = X -> ( A. z e. No ( ( x  z e. A ) <-> A. z e. No ( ( X  z e. A ) ) )
5 breq2
 |-  ( y = Y -> ( z  z 
6 5 anbi2d
 |-  ( y = Y -> ( ( X  ( X 
7 6 imbi1d
 |-  ( y = Y -> ( ( ( X  z e. A ) <-> ( ( X  z e. A ) ) )
8 7 ralbidv
 |-  ( y = Y -> ( A. z e. No ( ( X  z e. A ) <-> A. z e. No ( ( X  z e. A ) ) )
9 4 8 rspc2v
 |-  ( ( X e. A /\ Y e. A ) -> ( A. x e. A A. y e. A A. z e. No ( ( x  z e. A ) -> A. z e. No ( ( X  z e. A ) ) )
10 breq2
 |-  ( z = w -> ( X  X 
11 breq1
 |-  ( z = w -> ( z  w 
12 10 11 anbi12d
 |-  ( z = w -> ( ( X  ( X 
13 eleq1w
 |-  ( z = w -> ( z e. A <-> w e. A ) )
14 12 13 imbi12d
 |-  ( z = w -> ( ( ( X  z e. A ) <-> ( ( X  w e. A ) ) )
15 14 rspcv
 |-  ( w e. No -> ( A. z e. No ( ( X  z e. A ) -> ( ( X  w e. A ) ) )
16 bdaydm
 |-  dom bday = No
17 16 sseq2i
 |-  ( A C_ dom bday <-> A C_ No )
18 bdayfun
 |-  Fun bday
19 funfvima2
 |-  ( ( Fun bday /\ A C_ dom bday ) -> ( w e. A -> ( bday ` w ) e. ( bday " A ) ) )
20 18 19 mpan
 |-  ( A C_ dom bday -> ( w e. A -> ( bday ` w ) e. ( bday " A ) ) )
21 17 20 sylbir
 |-  ( A C_ No -> ( w e. A -> ( bday ` w ) e. ( bday " A ) ) )
22 21 imp
 |-  ( ( A C_ No /\ w e. A ) -> ( bday ` w ) e. ( bday " A ) )
23 intss1
 |-  ( ( bday ` w ) e. ( bday " A ) -> |^| ( bday " A ) C_ ( bday ` w ) )
24 22 23 syl
 |-  ( ( A C_ No /\ w e. A ) -> |^| ( bday " A ) C_ ( bday ` w ) )
25 imassrn
 |-  ( bday " A ) C_ ran bday
26 bdayrn
 |-  ran bday = On
27 25 26 sseqtri
 |-  ( bday " A ) C_ On
28 22 ne0d
 |-  ( ( A C_ No /\ w e. A ) -> ( bday " A ) =/= (/) )
29 oninton
 |-  ( ( ( bday " A ) C_ On /\ ( bday " A ) =/= (/) ) -> |^| ( bday " A ) e. On )
30 27 28 29 sylancr
 |-  ( ( A C_ No /\ w e. A ) -> |^| ( bday " A ) e. On )
31 bdayelon
 |-  ( bday ` w ) e. On
32 ontri1
 |-  ( ( |^| ( bday " A ) e. On /\ ( bday ` w ) e. On ) -> ( |^| ( bday " A ) C_ ( bday ` w ) <-> -. ( bday ` w ) e. |^| ( bday " A ) ) )
33 30 31 32 sylancl
 |-  ( ( A C_ No /\ w e. A ) -> ( |^| ( bday " A ) C_ ( bday ` w ) <-> -. ( bday ` w ) e. |^| ( bday " A ) ) )
34 24 33 mpbid
 |-  ( ( A C_ No /\ w e. A ) -> -. ( bday ` w ) e. |^| ( bday " A ) )
35 34 ex
 |-  ( A C_ No -> ( w e. A -> -. ( bday ` w ) e. |^| ( bday " A ) ) )
36 eleq2
 |-  ( ( bday ` X ) = |^| ( bday " A ) -> ( ( bday ` w ) e. ( bday ` X ) <-> ( bday ` w ) e. |^| ( bday " A ) ) )
37 36 notbid
 |-  ( ( bday ` X ) = |^| ( bday " A ) -> ( -. ( bday ` w ) e. ( bday ` X ) <-> -. ( bday ` w ) e. |^| ( bday " A ) ) )
38 37 biimprcd
 |-  ( -. ( bday ` w ) e. |^| ( bday " A ) -> ( ( bday ` X ) = |^| ( bday " A ) -> -. ( bday ` w ) e. ( bday ` X ) ) )
39 35 38 syl6
 |-  ( A C_ No -> ( w e. A -> ( ( bday ` X ) = |^| ( bday " A ) -> -. ( bday ` w ) e. ( bday ` X ) ) ) )
40 39 com3l
 |-  ( w e. A -> ( ( bday ` X ) = |^| ( bday " A ) -> ( A C_ No -> -. ( bday ` w ) e. ( bday ` X ) ) ) )
41 40 adantrd
 |-  ( w e. A -> ( ( ( bday ` X ) = |^| ( bday " A ) /\ ( bday ` Y ) = |^| ( bday " A ) ) -> ( A C_ No -> -. ( bday ` w ) e. ( bday ` X ) ) ) )
42 15 41 syl8
 |-  ( w e. No -> ( A. z e. No ( ( X  z e. A ) -> ( ( X  ( ( ( bday ` X ) = |^| ( bday " A ) /\ ( bday ` Y ) = |^| ( bday " A ) ) -> ( A C_ No -> -. ( bday ` w ) e. ( bday ` X ) ) ) ) ) )
43 42 com35
 |-  ( w e. No -> ( A. z e. No ( ( X  z e. A ) -> ( A C_ No -> ( ( ( bday ` X ) = |^| ( bday " A ) /\ ( bday ` Y ) = |^| ( bday " A ) ) -> ( ( X  -. ( bday ` w ) e. ( bday ` X ) ) ) ) ) )
44 43 com4l
 |-  ( A. z e. No ( ( X  z e. A ) -> ( A C_ No -> ( ( ( bday ` X ) = |^| ( bday " A ) /\ ( bday ` Y ) = |^| ( bday " A ) ) -> ( w e. No -> ( ( X  -. ( bday ` w ) e. ( bday ` X ) ) ) ) ) )
45 9 44 syl6
 |-  ( ( X e. A /\ Y e. A ) -> ( A. x e. A A. y e. A A. z e. No ( ( x  z e. A ) -> ( A C_ No -> ( ( ( bday ` X ) = |^| ( bday " A ) /\ ( bday ` Y ) = |^| ( bday " A ) ) -> ( w e. No -> ( ( X  -. ( bday ` w ) e. ( bday ` X ) ) ) ) ) ) )
46 45 com3l
 |-  ( A. x e. A A. y e. A A. z e. No ( ( x  z e. A ) -> ( A C_ No -> ( ( X e. A /\ Y e. A ) -> ( ( ( bday ` X ) = |^| ( bday " A ) /\ ( bday ` Y ) = |^| ( bday " A ) ) -> ( w e. No -> ( ( X  -. ( bday ` w ) e. ( bday ` X ) ) ) ) ) ) )
47 46 impcom
 |-  ( ( A C_ No /\ A. x e. A A. y e. A A. z e. No ( ( x  z e. A ) ) -> ( ( X e. A /\ Y e. A ) -> ( ( ( bday ` X ) = |^| ( bday " A ) /\ ( bday ` Y ) = |^| ( bday " A ) ) -> ( w e. No -> ( ( X  -. ( bday ` w ) e. ( bday ` X ) ) ) ) ) )
48 47 imp42
 |-  ( ( ( ( A C_ No /\ A. x e. A A. y e. A A. z e. No ( ( x  z e. A ) ) /\ ( ( X e. A /\ Y e. A ) /\ ( ( bday ` X ) = |^| ( bday " A ) /\ ( bday ` Y ) = |^| ( bday " A ) ) ) ) /\ w e. No ) -> ( ( X  -. ( bday ` w ) e. ( bday ` X ) ) )
49 48 con2d
 |-  ( ( ( ( A C_ No /\ A. x e. A A. y e. A A. z e. No ( ( x  z e. A ) ) /\ ( ( X e. A /\ Y e. A ) /\ ( ( bday ` X ) = |^| ( bday " A ) /\ ( bday ` Y ) = |^| ( bday " A ) ) ) ) /\ w e. No ) -> ( ( bday ` w ) e. ( bday ` X ) -> -. ( X 
50 3anass
 |-  ( ( ( bday ` w ) e. ( bday ` X ) /\ X  ( ( bday ` w ) e. ( bday ` X ) /\ ( X 
51 50 notbii
 |-  ( -. ( ( bday ` w ) e. ( bday ` X ) /\ X  -. ( ( bday ` w ) e. ( bday ` X ) /\ ( X 
52 imnan
 |-  ( ( ( bday ` w ) e. ( bday ` X ) -> -. ( X  -. ( ( bday ` w ) e. ( bday ` X ) /\ ( X 
53 51 52 bitr4i
 |-  ( -. ( ( bday ` w ) e. ( bday ` X ) /\ X  ( ( bday ` w ) e. ( bday ` X ) -> -. ( X 
54 49 53 sylibr
 |-  ( ( ( ( A C_ No /\ A. x e. A A. y e. A A. z e. No ( ( x  z e. A ) ) /\ ( ( X e. A /\ Y e. A ) /\ ( ( bday ` X ) = |^| ( bday " A ) /\ ( bday ` Y ) = |^| ( bday " A ) ) ) ) /\ w e. No ) -> -. ( ( bday ` w ) e. ( bday ` X ) /\ X 
55 54 nrexdv
 |-  ( ( ( A C_ No /\ A. x e. A A. y e. A A. z e. No ( ( x  z e. A ) ) /\ ( ( X e. A /\ Y e. A ) /\ ( ( bday ` X ) = |^| ( bday " A ) /\ ( bday ` Y ) = |^| ( bday " A ) ) ) ) -> -. E. w e. No ( ( bday ` w ) e. ( bday ` X ) /\ X 
56 ssel
 |-  ( A C_ No -> ( X e. A -> X e. No ) )
57 ssel
 |-  ( A C_ No -> ( Y e. A -> Y e. No ) )
58 56 57 anim12d
 |-  ( A C_ No -> ( ( X e. A /\ Y e. A ) -> ( X e. No /\ Y e. No ) ) )
59 58 imp
 |-  ( ( A C_ No /\ ( X e. A /\ Y e. A ) ) -> ( X e. No /\ Y e. No ) )
60 eqtr3
 |-  ( ( ( bday ` X ) = |^| ( bday " A ) /\ ( bday ` Y ) = |^| ( bday " A ) ) -> ( bday ` X ) = ( bday ` Y ) )
61 59 60 anim12i
 |-  ( ( ( A C_ No /\ ( X e. A /\ Y e. A ) ) /\ ( ( bday ` X ) = |^| ( bday " A ) /\ ( bday ` Y ) = |^| ( bday " A ) ) ) -> ( ( X e. No /\ Y e. No ) /\ ( bday ` X ) = ( bday ` Y ) ) )
62 61 anasss
 |-  ( ( A C_ No /\ ( ( X e. A /\ Y e. A ) /\ ( ( bday ` X ) = |^| ( bday " A ) /\ ( bday ` Y ) = |^| ( bday " A ) ) ) ) -> ( ( X e. No /\ Y e. No ) /\ ( bday ` X ) = ( bday ` Y ) ) )
63 62 adantlr
 |-  ( ( ( A C_ No /\ A. x e. A A. y e. A A. z e. No ( ( x  z e. A ) ) /\ ( ( X e. A /\ Y e. A ) /\ ( ( bday ` X ) = |^| ( bday " A ) /\ ( bday ` Y ) = |^| ( bday " A ) ) ) ) -> ( ( X e. No /\ Y e. No ) /\ ( bday ` X ) = ( bday ` Y ) ) )
64 nodense
 |-  ( ( ( X e. No /\ Y e. No ) /\ ( ( bday ` X ) = ( bday ` Y ) /\ X  E. w e. No ( ( bday ` w ) e. ( bday ` X ) /\ X 
65 64 anassrs
 |-  ( ( ( ( X e. No /\ Y e. No ) /\ ( bday ` X ) = ( bday ` Y ) ) /\ X  E. w e. No ( ( bday ` w ) e. ( bday ` X ) /\ X 
66 63 65 sylan
 |-  ( ( ( ( A C_ No /\ A. x e. A A. y e. A A. z e. No ( ( x  z e. A ) ) /\ ( ( X e. A /\ Y e. A ) /\ ( ( bday ` X ) = |^| ( bday " A ) /\ ( bday ` Y ) = |^| ( bday " A ) ) ) ) /\ X  E. w e. No ( ( bday ` w ) e. ( bday ` X ) /\ X 
67 55 66 mtand
 |-  ( ( ( A C_ No /\ A. x e. A A. y e. A A. z e. No ( ( x  z e. A ) ) /\ ( ( X e. A /\ Y e. A ) /\ ( ( bday ` X ) = |^| ( bday " A ) /\ ( bday ` Y ) = |^| ( bday " A ) ) ) ) -> -. X 
68 67 ex
 |-  ( ( A C_ No /\ A. x e. A A. y e. A A. z e. No ( ( x  z e. A ) ) -> ( ( ( X e. A /\ Y e. A ) /\ ( ( bday ` X ) = |^| ( bday " A ) /\ ( bday ` Y ) = |^| ( bday " A ) ) ) -> -. X