Step |
Hyp |
Ref |
Expression |
1 |
|
breq1 |
|- ( x = X -> ( x X |
2 |
1
|
anbi1d |
|- ( x = X -> ( ( x ( X |
3 |
2
|
imbi1d |
|- ( x = X -> ( ( ( x z e. A ) <-> ( ( X z e. A ) ) ) |
4 |
3
|
ralbidv |
|- ( x = X -> ( A. z e. No ( ( x z e. A ) <-> A. z e. No ( ( X z e. A ) ) ) |
5 |
|
breq2 |
|- ( y = Y -> ( z z |
6 |
5
|
anbi2d |
|- ( y = Y -> ( ( X ( X |
7 |
6
|
imbi1d |
|- ( y = Y -> ( ( ( X z e. A ) <-> ( ( X z e. A ) ) ) |
8 |
7
|
ralbidv |
|- ( y = Y -> ( A. z e. No ( ( X z e. A ) <-> A. z e. No ( ( X z e. A ) ) ) |
9 |
4 8
|
rspc2v |
|- ( ( X e. A /\ Y e. A ) -> ( A. x e. A A. y e. A A. z e. No ( ( x z e. A ) -> A. z e. No ( ( X z e. A ) ) ) |
10 |
|
breq2 |
|- ( z = w -> ( X X |
11 |
|
breq1 |
|- ( z = w -> ( z w |
12 |
10 11
|
anbi12d |
|- ( z = w -> ( ( X ( X |
13 |
|
eleq1w |
|- ( z = w -> ( z e. A <-> w e. A ) ) |
14 |
12 13
|
imbi12d |
|- ( z = w -> ( ( ( X z e. A ) <-> ( ( X w e. A ) ) ) |
15 |
14
|
rspcv |
|- ( w e. No -> ( A. z e. No ( ( X z e. A ) -> ( ( X w e. A ) ) ) |
16 |
|
bdaydm |
|- dom bday = No |
17 |
16
|
sseq2i |
|- ( A C_ dom bday <-> A C_ No ) |
18 |
|
bdayfun |
|- Fun bday |
19 |
|
funfvima2 |
|- ( ( Fun bday /\ A C_ dom bday ) -> ( w e. A -> ( bday ` w ) e. ( bday " A ) ) ) |
20 |
18 19
|
mpan |
|- ( A C_ dom bday -> ( w e. A -> ( bday ` w ) e. ( bday " A ) ) ) |
21 |
17 20
|
sylbir |
|- ( A C_ No -> ( w e. A -> ( bday ` w ) e. ( bday " A ) ) ) |
22 |
21
|
imp |
|- ( ( A C_ No /\ w e. A ) -> ( bday ` w ) e. ( bday " A ) ) |
23 |
|
intss1 |
|- ( ( bday ` w ) e. ( bday " A ) -> |^| ( bday " A ) C_ ( bday ` w ) ) |
24 |
22 23
|
syl |
|- ( ( A C_ No /\ w e. A ) -> |^| ( bday " A ) C_ ( bday ` w ) ) |
25 |
|
imassrn |
|- ( bday " A ) C_ ran bday |
26 |
|
bdayrn |
|- ran bday = On |
27 |
25 26
|
sseqtri |
|- ( bday " A ) C_ On |
28 |
22
|
ne0d |
|- ( ( A C_ No /\ w e. A ) -> ( bday " A ) =/= (/) ) |
29 |
|
oninton |
|- ( ( ( bday " A ) C_ On /\ ( bday " A ) =/= (/) ) -> |^| ( bday " A ) e. On ) |
30 |
27 28 29
|
sylancr |
|- ( ( A C_ No /\ w e. A ) -> |^| ( bday " A ) e. On ) |
31 |
|
bdayelon |
|- ( bday ` w ) e. On |
32 |
|
ontri1 |
|- ( ( |^| ( bday " A ) e. On /\ ( bday ` w ) e. On ) -> ( |^| ( bday " A ) C_ ( bday ` w ) <-> -. ( bday ` w ) e. |^| ( bday " A ) ) ) |
33 |
30 31 32
|
sylancl |
|- ( ( A C_ No /\ w e. A ) -> ( |^| ( bday " A ) C_ ( bday ` w ) <-> -. ( bday ` w ) e. |^| ( bday " A ) ) ) |
34 |
24 33
|
mpbid |
|- ( ( A C_ No /\ w e. A ) -> -. ( bday ` w ) e. |^| ( bday " A ) ) |
35 |
34
|
ex |
|- ( A C_ No -> ( w e. A -> -. ( bday ` w ) e. |^| ( bday " A ) ) ) |
36 |
|
eleq2 |
|- ( ( bday ` X ) = |^| ( bday " A ) -> ( ( bday ` w ) e. ( bday ` X ) <-> ( bday ` w ) e. |^| ( bday " A ) ) ) |
37 |
36
|
notbid |
|- ( ( bday ` X ) = |^| ( bday " A ) -> ( -. ( bday ` w ) e. ( bday ` X ) <-> -. ( bday ` w ) e. |^| ( bday " A ) ) ) |
38 |
37
|
biimprcd |
|- ( -. ( bday ` w ) e. |^| ( bday " A ) -> ( ( bday ` X ) = |^| ( bday " A ) -> -. ( bday ` w ) e. ( bday ` X ) ) ) |
39 |
35 38
|
syl6 |
|- ( A C_ No -> ( w e. A -> ( ( bday ` X ) = |^| ( bday " A ) -> -. ( bday ` w ) e. ( bday ` X ) ) ) ) |
40 |
39
|
com3l |
|- ( w e. A -> ( ( bday ` X ) = |^| ( bday " A ) -> ( A C_ No -> -. ( bday ` w ) e. ( bday ` X ) ) ) ) |
41 |
40
|
adantrd |
|- ( w e. A -> ( ( ( bday ` X ) = |^| ( bday " A ) /\ ( bday ` Y ) = |^| ( bday " A ) ) -> ( A C_ No -> -. ( bday ` w ) e. ( bday ` X ) ) ) ) |
42 |
15 41
|
syl8 |
|- ( w e. No -> ( A. z e. No ( ( X z e. A ) -> ( ( X ( ( ( bday ` X ) = |^| ( bday " A ) /\ ( bday ` Y ) = |^| ( bday " A ) ) -> ( A C_ No -> -. ( bday ` w ) e. ( bday ` X ) ) ) ) ) ) |
43 |
42
|
com35 |
|- ( w e. No -> ( A. z e. No ( ( X z e. A ) -> ( A C_ No -> ( ( ( bday ` X ) = |^| ( bday " A ) /\ ( bday ` Y ) = |^| ( bday " A ) ) -> ( ( X -. ( bday ` w ) e. ( bday ` X ) ) ) ) ) ) |
44 |
43
|
com4l |
|- ( A. z e. No ( ( X z e. A ) -> ( A C_ No -> ( ( ( bday ` X ) = |^| ( bday " A ) /\ ( bday ` Y ) = |^| ( bday " A ) ) -> ( w e. No -> ( ( X -. ( bday ` w ) e. ( bday ` X ) ) ) ) ) ) |
45 |
9 44
|
syl6 |
|- ( ( X e. A /\ Y e. A ) -> ( A. x e. A A. y e. A A. z e. No ( ( x z e. A ) -> ( A C_ No -> ( ( ( bday ` X ) = |^| ( bday " A ) /\ ( bday ` Y ) = |^| ( bday " A ) ) -> ( w e. No -> ( ( X -. ( bday ` w ) e. ( bday ` X ) ) ) ) ) ) ) |
46 |
45
|
com3l |
|- ( A. x e. A A. y e. A A. z e. No ( ( x z e. A ) -> ( A C_ No -> ( ( X e. A /\ Y e. A ) -> ( ( ( bday ` X ) = |^| ( bday " A ) /\ ( bday ` Y ) = |^| ( bday " A ) ) -> ( w e. No -> ( ( X -. ( bday ` w ) e. ( bday ` X ) ) ) ) ) ) ) |
47 |
46
|
impcom |
|- ( ( A C_ No /\ A. x e. A A. y e. A A. z e. No ( ( x z e. A ) ) -> ( ( X e. A /\ Y e. A ) -> ( ( ( bday ` X ) = |^| ( bday " A ) /\ ( bday ` Y ) = |^| ( bday " A ) ) -> ( w e. No -> ( ( X -. ( bday ` w ) e. ( bday ` X ) ) ) ) ) ) |
48 |
47
|
imp42 |
|- ( ( ( ( A C_ No /\ A. x e. A A. y e. A A. z e. No ( ( x z e. A ) ) /\ ( ( X e. A /\ Y e. A ) /\ ( ( bday ` X ) = |^| ( bday " A ) /\ ( bday ` Y ) = |^| ( bday " A ) ) ) ) /\ w e. No ) -> ( ( X -. ( bday ` w ) e. ( bday ` X ) ) ) |
49 |
48
|
con2d |
|- ( ( ( ( A C_ No /\ A. x e. A A. y e. A A. z e. No ( ( x z e. A ) ) /\ ( ( X e. A /\ Y e. A ) /\ ( ( bday ` X ) = |^| ( bday " A ) /\ ( bday ` Y ) = |^| ( bday " A ) ) ) ) /\ w e. No ) -> ( ( bday ` w ) e. ( bday ` X ) -> -. ( X |
50 |
|
3anass |
|- ( ( ( bday ` w ) e. ( bday ` X ) /\ X ( ( bday ` w ) e. ( bday ` X ) /\ ( X |
51 |
50
|
notbii |
|- ( -. ( ( bday ` w ) e. ( bday ` X ) /\ X -. ( ( bday ` w ) e. ( bday ` X ) /\ ( X |
52 |
|
imnan |
|- ( ( ( bday ` w ) e. ( bday ` X ) -> -. ( X -. ( ( bday ` w ) e. ( bday ` X ) /\ ( X |
53 |
51 52
|
bitr4i |
|- ( -. ( ( bday ` w ) e. ( bday ` X ) /\ X ( ( bday ` w ) e. ( bday ` X ) -> -. ( X |
54 |
49 53
|
sylibr |
|- ( ( ( ( A C_ No /\ A. x e. A A. y e. A A. z e. No ( ( x z e. A ) ) /\ ( ( X e. A /\ Y e. A ) /\ ( ( bday ` X ) = |^| ( bday " A ) /\ ( bday ` Y ) = |^| ( bday " A ) ) ) ) /\ w e. No ) -> -. ( ( bday ` w ) e. ( bday ` X ) /\ X |
55 |
54
|
nrexdv |
|- ( ( ( A C_ No /\ A. x e. A A. y e. A A. z e. No ( ( x z e. A ) ) /\ ( ( X e. A /\ Y e. A ) /\ ( ( bday ` X ) = |^| ( bday " A ) /\ ( bday ` Y ) = |^| ( bday " A ) ) ) ) -> -. E. w e. No ( ( bday ` w ) e. ( bday ` X ) /\ X |
56 |
|
ssel |
|- ( A C_ No -> ( X e. A -> X e. No ) ) |
57 |
|
ssel |
|- ( A C_ No -> ( Y e. A -> Y e. No ) ) |
58 |
56 57
|
anim12d |
|- ( A C_ No -> ( ( X e. A /\ Y e. A ) -> ( X e. No /\ Y e. No ) ) ) |
59 |
58
|
imp |
|- ( ( A C_ No /\ ( X e. A /\ Y e. A ) ) -> ( X e. No /\ Y e. No ) ) |
60 |
|
eqtr3 |
|- ( ( ( bday ` X ) = |^| ( bday " A ) /\ ( bday ` Y ) = |^| ( bday " A ) ) -> ( bday ` X ) = ( bday ` Y ) ) |
61 |
59 60
|
anim12i |
|- ( ( ( A C_ No /\ ( X e. A /\ Y e. A ) ) /\ ( ( bday ` X ) = |^| ( bday " A ) /\ ( bday ` Y ) = |^| ( bday " A ) ) ) -> ( ( X e. No /\ Y e. No ) /\ ( bday ` X ) = ( bday ` Y ) ) ) |
62 |
61
|
anasss |
|- ( ( A C_ No /\ ( ( X e. A /\ Y e. A ) /\ ( ( bday ` X ) = |^| ( bday " A ) /\ ( bday ` Y ) = |^| ( bday " A ) ) ) ) -> ( ( X e. No /\ Y e. No ) /\ ( bday ` X ) = ( bday ` Y ) ) ) |
63 |
62
|
adantlr |
|- ( ( ( A C_ No /\ A. x e. A A. y e. A A. z e. No ( ( x z e. A ) ) /\ ( ( X e. A /\ Y e. A ) /\ ( ( bday ` X ) = |^| ( bday " A ) /\ ( bday ` Y ) = |^| ( bday " A ) ) ) ) -> ( ( X e. No /\ Y e. No ) /\ ( bday ` X ) = ( bday ` Y ) ) ) |
64 |
|
nodense |
|- ( ( ( X e. No /\ Y e. No ) /\ ( ( bday ` X ) = ( bday ` Y ) /\ X E. w e. No ( ( bday ` w ) e. ( bday ` X ) /\ X |
65 |
64
|
anassrs |
|- ( ( ( ( X e. No /\ Y e. No ) /\ ( bday ` X ) = ( bday ` Y ) ) /\ X E. w e. No ( ( bday ` w ) e. ( bday ` X ) /\ X |
66 |
63 65
|
sylan |
|- ( ( ( ( A C_ No /\ A. x e. A A. y e. A A. z e. No ( ( x z e. A ) ) /\ ( ( X e. A /\ Y e. A ) /\ ( ( bday ` X ) = |^| ( bday " A ) /\ ( bday ` Y ) = |^| ( bday " A ) ) ) ) /\ X E. w e. No ( ( bday ` w ) e. ( bday ` X ) /\ X |
67 |
55 66
|
mtand |
|- ( ( ( A C_ No /\ A. x e. A A. y e. A A. z e. No ( ( x z e. A ) ) /\ ( ( X e. A /\ Y e. A ) /\ ( ( bday ` X ) = |^| ( bday " A ) /\ ( bday ` Y ) = |^| ( bday " A ) ) ) ) -> -. X |
68 |
67
|
ex |
|- ( ( A C_ No /\ A. x e. A A. y e. A A. z e. No ( ( x z e. A ) ) -> ( ( ( X e. A /\ Y e. A ) /\ ( ( bday ` X ) = |^| ( bday " A ) /\ ( bday ` Y ) = |^| ( bday " A ) ) ) -> -. X |