Metamath Proof Explorer


Theorem nocvxminlem

Description: Lemma for nocvxmin . Given two birthday-minimal elements of a convex class of surreals, they are not comparable. (Contributed by Scott Fenton, 30-Jun-2011)

Ref Expression
Assertion nocvxminlem A No x A y A z No x < s z z < s y z A X A Y A bday X = bday A bday Y = bday A ¬ X < s Y

Proof

Step Hyp Ref Expression
1 breq1 x = X x < s z X < s z
2 1 anbi1d x = X x < s z z < s y X < s z z < s y
3 2 imbi1d x = X x < s z z < s y z A X < s z z < s y z A
4 3 ralbidv x = X z No x < s z z < s y z A z No X < s z z < s y z A
5 breq2 y = Y z < s y z < s Y
6 5 anbi2d y = Y X < s z z < s y X < s z z < s Y
7 6 imbi1d y = Y X < s z z < s y z A X < s z z < s Y z A
8 7 ralbidv y = Y z No X < s z z < s y z A z No X < s z z < s Y z A
9 4 8 rspc2v X A Y A x A y A z No x < s z z < s y z A z No X < s z z < s Y z A
10 breq2 z = w X < s z X < s w
11 breq1 z = w z < s Y w < s Y
12 10 11 anbi12d z = w X < s z z < s Y X < s w w < s Y
13 eleq1w z = w z A w A
14 12 13 imbi12d z = w X < s z z < s Y z A X < s w w < s Y w A
15 14 rspcv w No z No X < s z z < s Y z A X < s w w < s Y w A
16 bdaydm dom bday = No
17 16 sseq2i A dom bday A No
18 bdayfun Fun bday
19 funfvima2 Fun bday A dom bday w A bday w bday A
20 18 19 mpan A dom bday w A bday w bday A
21 17 20 sylbir A No w A bday w bday A
22 21 imp A No w A bday w bday A
23 intss1 bday w bday A bday A bday w
24 22 23 syl A No w A bday A bday w
25 imassrn bday A ran bday
26 bdayrn ran bday = On
27 25 26 sseqtri bday A On
28 22 ne0d A No w A bday A
29 oninton bday A On bday A bday A On
30 27 28 29 sylancr A No w A bday A On
31 bdayelon bday w On
32 ontri1 bday A On bday w On bday A bday w ¬ bday w bday A
33 30 31 32 sylancl A No w A bday A bday w ¬ bday w bday A
34 24 33 mpbid A No w A ¬ bday w bday A
35 34 ex A No w A ¬ bday w bday A
36 eleq2 bday X = bday A bday w bday X bday w bday A
37 36 notbid bday X = bday A ¬ bday w bday X ¬ bday w bday A
38 37 biimprcd ¬ bday w bday A bday X = bday A ¬ bday w bday X
39 35 38 syl6 A No w A bday X = bday A ¬ bday w bday X
40 39 com3l w A bday X = bday A A No ¬ bday w bday X
41 40 adantrd w A bday X = bday A bday Y = bday A A No ¬ bday w bday X
42 15 41 syl8 w No z No X < s z z < s Y z A X < s w w < s Y bday X = bday A bday Y = bday A A No ¬ bday w bday X
43 42 com35 w No z No X < s z z < s Y z A A No bday X = bday A bday Y = bday A X < s w w < s Y ¬ bday w bday X
44 43 com4l z No X < s z z < s Y z A A No bday X = bday A bday Y = bday A w No X < s w w < s Y ¬ bday w bday X
45 9 44 syl6 X A Y A x A y A z No x < s z z < s y z A A No bday X = bday A bday Y = bday A w No X < s w w < s Y ¬ bday w bday X
46 45 com3l x A y A z No x < s z z < s y z A A No X A Y A bday X = bday A bday Y = bday A w No X < s w w < s Y ¬ bday w bday X
47 46 impcom A No x A y A z No x < s z z < s y z A X A Y A bday X = bday A bday Y = bday A w No X < s w w < s Y ¬ bday w bday X
48 47 imp42 A No x A y A z No x < s z z < s y z A X A Y A bday X = bday A bday Y = bday A w No X < s w w < s Y ¬ bday w bday X
49 48 con2d A No x A y A z No x < s z z < s y z A X A Y A bday X = bday A bday Y = bday A w No bday w bday X ¬ X < s w w < s Y
50 3anass bday w bday X X < s w w < s Y bday w bday X X < s w w < s Y
51 50 notbii ¬ bday w bday X X < s w w < s Y ¬ bday w bday X X < s w w < s Y
52 imnan bday w bday X ¬ X < s w w < s Y ¬ bday w bday X X < s w w < s Y
53 51 52 bitr4i ¬ bday w bday X X < s w w < s Y bday w bday X ¬ X < s w w < s Y
54 49 53 sylibr A No x A y A z No x < s z z < s y z A X A Y A bday X = bday A bday Y = bday A w No ¬ bday w bday X X < s w w < s Y
55 54 nrexdv A No x A y A z No x < s z z < s y z A X A Y A bday X = bday A bday Y = bday A ¬ w No bday w bday X X < s w w < s Y
56 ssel A No X A X No
57 ssel A No Y A Y No
58 56 57 anim12d A No X A Y A X No Y No
59 58 imp A No X A Y A X No Y No
60 eqtr3 bday X = bday A bday Y = bday A bday X = bday Y
61 59 60 anim12i A No X A Y A bday X = bday A bday Y = bday A X No Y No bday X = bday Y
62 61 anasss A No X A Y A bday X = bday A bday Y = bday A X No Y No bday X = bday Y
63 62 adantlr A No x A y A z No x < s z z < s y z A X A Y A bday X = bday A bday Y = bday A X No Y No bday X = bday Y
64 nodense X No Y No bday X = bday Y X < s Y w No bday w bday X X < s w w < s Y
65 64 anassrs X No Y No bday X = bday Y X < s Y w No bday w bday X X < s w w < s Y
66 63 65 sylan A No x A y A z No x < s z z < s y z A X A Y A bday X = bday A bday Y = bday A X < s Y w No bday w bday X X < s w w < s Y
67 55 66 mtand A No x A y A z No x < s z z < s y z A X A Y A bday X = bday A bday Y = bday A ¬ X < s Y
68 67 ex A No x A y A z No x < s z z < s y z A X A Y A bday X = bday A bday Y = bday A ¬ X < s Y